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PREFACE  

A structure can be defined as a fully functional object formed by connecting the 
elements together. Natural structures vary from the very smallest part of an atom to the 
entire cosmology of the universe. Trees, animals and human beings could also be 
treated as structures. Man-made structures include buildings, bridges, dams, ships, 
aeroplanes, rockets, trains, cars, artefacts, and sculptures etc. 

The primary objective of civil engineering structures is to function as an integral 
unit in transmitting loads to the supporting medium safely. This physical structures 
become reality after going through many phases like Conceptual plan, Structural 
analysis and design, and Construction. Structural analysis mainly focusses on 
predicting the response of structures subjected to specified arbitrary external loads. 
Structural design aims at determining the most suitable proportions, dimensions and 
details of the elements and connections for satisfying the requirements set by the 
responses resulted in the analysis. 

All too often in today’s world, advanced computer programs are being used for the 
analysis and design. A proper understanding of the basic principles concerning how 
structures really work is essential for using the computer-based tools effectively and 
sensibly. Theory of structures underscores the fundamental concepts behind the 
analysis and design. Therefore, the primary goal of this book is to impart a basic 
understanding of structural behaviour to students (at diploma level in particular) 
interested in analysis and design of structures subjected to different types of loads. The 
contents of this book are limited to analysis of structures wherein the force and 
displacement responses of structural elements are obtained. 

The book is presented in five units to cater the requirements of model curriculum 
prescribed by All India Council for Technical Education. The first unit presents the 
analysis procedure to determine the stresses in vertical members such as columns and 
chimneys, and analysis of dams. The second unit presents the analytical methods for 
obtaining the displacement responses of statically determinate structures. It is 
presumed that the students have thorough background knowledge for analysing 
statically determinate beams for the force responses, which are the basic requirements 
for getting the displacement responses. The third unit presents the techniques to solve 
statically indeterminate structures such as fixed beams and two-span continuous beams 
using the conventional force method. The fourth unit presents an iterative numerical 
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procedure to solve statically indeterminate structures for the force responses. The last 
unit presents different techniques to analyse the pin-jointed statically determinate truss 
structures. 

The emphasis throughout is on clarity in basic understanding of concepts and their 
applications to a wide variety of problems. Wherever possible, a visual language of 
structural behaviour is considered for a qualitative understanding of the response of 
structure. Students must bear in mind that the numbers resulting from the analysis 
should not be viewed as mere numbers, because they may bear significant values 
intrinsically. 

எண◌ ்ணணன◌ ்ப ஏனன எழ◌ஓத◌ண்தன◌ ்ப இவ◌்வ◌ிரண◌ ்௄ம◌ ்
கண் ணணன் ப வா௱ம் உ௜ரக்ஶ. 
Numbers and letters are the two discerning eyes for all mankind to make the best of 
life. (Thirukkural No. 392). 

 

Dr. Arunachalam Subramanian Balu 
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OUTCOME BASED EDUCATION 

For the implementation of an outcome based education the first requirement is to develop 
an outcome based curriculum and incorporate an outcome based assessment in the 
education system. By going through outcome based assessments, evaluators will be able to 
evaluate whether the students have achieved the outlined standard, specific and measurable 
outcomes. With the proper incorporation of outcome based education there will be a 
definite commitment to achieve a minimum standard for all learners without giving up at 
any level. At the end of the programme running with the aid of outcome based education, 
a student will be able to arrive at the following outcomes: 

Programme Outcomes (POs) are statements that describe what students are expected 
to know and be able to do upon graduating from the program. These relate to the skills, 
knowledge, analytical ability attitude and behaviour that students acquire through the 
program. The POs essentially indicate what the students can do from subject-wise 
knowledge acquired by them during the program. As such, POs define the professional 
profile of an engineering diploma graduate. 

National Board of Accreditation (NBA) has defined the following seven POs for an 
Engineering diploma graduate: 

PO1. Basic and Discipline specific knowledge: Apply knowledge of basic mathematics, 
science and engineering fundamentals and engineering specialization to solve the 
engineering problems. 

PO2. Problem analysis: Identify and analyses well-defined engineering problems using 
codified standard methods. 

PO3. Design/ development of solutions: Design solutions for well-defined technical 
problems and assist with the design of systems components or processes to meet 
specified needs. 

PO4. Engineering Tools, Experimentation and Testing: Apply modern engineering 
tools and appropriate technique to conduct standard tests and measurements. 

PO5. Engineering practices for society, sustainability and environment: Apply 
appropriate technology in context of society, sustainability, environment and ethical 
practices. 

PO6. Project Management: Use engineering management principles individually, as a 
team member or a leader to manage projects and effectively communicate about well-
defined engineering activities. 

PO7. Life-long learning: Ability to analyse individual needs and engage in updating in 
the context of technological changes. 
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COURSE OUTCOMES 

By the end of the course, students are expected to be familiar with the following. 

CO-1: Fundamentals of stresses and safety conditions in columns, chimneys and dams 

CO-2Different methods for evaluating displacement responses of structures 

CO-3: Analysis of statically indeterminate structures for force responses 

CO-4: Determination of salient parameters required for design of structural elements  

CO-5: Analysis of simple truss structures 

Mapping of Course Outcomes with Programme Outcomes  

Course 
Outcomes 

Expected Mapping with Programme Outcomes 

(1- Weak Correlation; 2- Medium correlation; 3- Strong Correlation) 

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 

CO-1 3 3 3 2 1 1 3 

CO-2 3 3 2 2 1 1 3 

CO-3 3 3 2 1 1 1 3 

CO-4 3 3 3 1 1 1 3 

CO-5 3 3 2 1 1 1 3 
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GUIDELINES FOR TEACHERS 

To implement Outcome Based Education (OBE) knowledge level and skill set of the 
students should be enhanced. Teachers should take a major responsibility for the proper 
implementation of OBE. Some of the responsibilities (not limited to) for the teachers in 
OBE system may be as follows:  

 Within reasonable constraint, they should manipulate time to the best advantage of 
all students.  

 They should assess the students only upon certain defined criterion without 
considering any other potential ineligibility to discriminate them.  

 They should try to grow the learning abilities of the students to a certain level before 
they leave the institute.  

 They should try to ensure that all the students are equipped with the quality 
knowledge as well as competence after they finish their education.  

 They should always encourage the students to develop their ultimate performance 
capabilities.  

 They should facilitate and encourage group work and team work to consolidate 
newer approach.  

 They should follow Blooms taxonomy in every part of the assessment.  

 

Bloom’s Taxonomy 

Level 
Teacher should 

Check 
Student should be 

able to 
Possible Mode of 

Assessment 
 Create  Students ability to 

create 
Design or Create Mini project 

 Evaluate  Students ability to 
justify 

Argue or Defend Assignment 

 Analyse  Students ability to 
distinguish 

Differentiate or 
Distinguish 

Project/Lab 
Methodology 

 Apply  Students ability to 
use information 

Operate or 
Demonstrate 

Technical Presentation/ 
Demonstration 

 Understand  Students ability to 
explain the ideas 

Explain or Classify Presentation/Seminar 

Remember 
Students ability to 

recall (or remember) 
Define or Recall Quiz 
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GUIDELINES FOR STUDENTS 

Students should take equal responsibility for implementing the OBE. Some of the 
responsibilities (not limited to) for the students in OBE system are as follows:  

 Students should be well aware of each Unit Outcome (UO) before the start of a unit 
in each and every course.  

 Students should be well aware of each Course Outcome (CO) before the start of the 
course.  

 Students should be well aware of each Programme Outcome (PO) before the start 
of the programme.  

 Students should think critically and reasonably with proper reflection and action.  
 Learning of the students should be connected and integrated with practical and real 

life consequences.  
 Students should be well aware of their competency at every level of OBE.  
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ABBREVIATIONS AND SYMBOLS 

 

BC Boundary Condition 

BMD Bending Moment Diagram  

COF Carry Over Factor 

COM Carry Over Moment 

DKI Degree of Kinematic Indeterminacy  

DSI Degree of Static Indeterminacy  

FEM Fixed End Moment 

FS Factor of Safety 

SFD Shear Force Diagram 

 

A Area 

b Breadth 

C Compression 

d Depth, Internal diameter 

D External diameter 

e Eccentricity 

E Modulus of elasticity 

F Force 

h Height 

H Horizontal reaction, height 

I Moment of inertia 

j Joint 

K Stiffness factor 

k Wind resistance 

L Length 

M Moment 

P Load, Thrust 

p Pressure 

r Radius of gyration, Reaction 

R Radius of curvature, Resultant 

S Shear 

T Tension 

V Shear, Vertical reaction, Volume 

w Distributed load 

W Load, Weight 

  Chord rotation 

  Curvature 
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  Deflection 

  Deformation 

  Density 

  Distribution factor 

θ  Slope 

  Strain 

  Stress 

L  Change in length 

µ  Coefficient of friction
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UNIT SPECIFICS  

This unit discusses the following aspects. 

 Principles of structural analysis 

 Concepts of direct and bending stresses 

 Analysis of vertical members such as columns, chimneys and dams  

RATIONALE  

Basic concepts of structural analysis are highlighted to understand the importance of this course. 

Structural design process requires the information of stress resultants as necessary input. Therefore, 

most of the structural analysis procedures aim at estimating the stresses developed in the elements 

due to application of loads. This chapter explains the detailed procedure for analysing vertical 

structural elements for the resultant stresses. 

UNIT OUTCOMES 

List of outcomes of this unit is as follows. 

U1-O1: Describe the need for structural analysis 

U1-O2:  Describe the concepts of stresses 

U1-O3:  Describe the procedure for obtaining resultant stresses 

U1-O4: Analyse solid and hollow chimneys  

U1-O5:  Analyse and check the conditions of stability for rectangular and trapezoidal dams 

Mapping of Unit-1 Outcomes with Course Outcomes * 

 CO-1 CO-2 CO-3 CO-4 CO-5 

U1-O1 3 3 3 3 3 

U1-O2 3 1 2 2 2 

U1-O3 3 1 1 1 1 

U1-O4 3 1 1 1 1 

U1-O5 3 1 1 1 1 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation) 

  

Direct and Bending Stresses 1 



2 | Direct and Bending Stresses 

 

1.1 Introduction 

Everything has structure. The function of a structure is to provide the form and shape on which 

other functions can operate. In a building context, structure is a device for channelling loads (i.e., 

dead or live loads that act on structures) to the ground. Though a structure functions as a whole, 

students must realise that a typical building is composed of a seemingly endless array of individual 

elements like beams and columns. These elements are invariably so positioned and interrelated as 

to enable the overall structure to function as a whole in carrying either vertically or horizontally 

acting loads to the ground. No matter how some individual elements are located and attached to 

one another, if the resultant configuration and interrelation of all elements does not function as a 

whole unit in channelling all anticipated types of loads to the ground, the configuration cannot be 

said to be a structure. 

1.2 Structural Analysis 

Theory of structure is a broader area of structural engineering in which analysis is the determination 

of responses of a structure to the loads that act upon it, whereas design is the creation and 

subsequent modification of the physical configuration of a structure to achieve a desired response. 

This book is limited to serve the purpose of the former as indicated in Figure 1.1. The loads may 

be directly (e.g., concentrated, uniformly distributed, varying loads/forces, etc.), or indirectly (e.g., 

differential support settlement, environmental effects, etc.) applied to the structure. Similarly, 

responses are broadly classified into force (e.g., shear force, bending moment, torsional moment, 

etc.), and displacement (elongation/contraction, slope, deflection, curvature, etc.) responses. The 

force responses are required for proportioning the elements whereas the displacement responses 

are required for checking the serviceability conditions during the design process. 

Students should bear in mind that the physical structures and loads are converted into idealized 

mathematical models for performing the analysis for the desired response quantities. Therefore, 

each number is very important, because it may bear different values. This essentially means that 

understanding the physics of mathematics is important. 

 

Figure 1.1 Process in structural analysis 

 

Loads Structure Responses 
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1.3 Basic Equations 

Material continuity without discontinuities or cracks is a logical assumption in solid mechanics. 

This assumption leads to a mathematical description of geometric relations of a continuous medium 

known as continuum expressed as compatibility conditions.  

In order to establish a solution in any solid mechanics problem in which structural engineering 

is one of its applications, the following three basic sets of relations have to be fulfilled. 

i) Equilibrium conditions, which guarantee that the body is always in equilibrium  

ii) Compatibility conditions, which guarantee that the body remains continuous  

iii) Constitutive relations, which connect stresses and strains of a material behaviour 

In short, the mechanics analysis of a given structural problem or a proposed structural design must 

involve the mathematical formulation of the above three sets of equations and solutions. It does not 

mean that the solution procedure necessitates the application of all the above equations. Depending 

on the nature of the problem, some of the conditions are explicitly satisfied to arrive at a solution 

while other conditions are implicitly satisfied. The interrelationship of these three sets of basic 

equations for static analysis is shown in Figure 1.2. 

1.4 Indeterminacy 

Simple structures like cantilever and simply supported beams can be solved by the application of 

the three equations of statical equilibrium (i.e., all horizontal forces must balance, all vertical forces 

must balance, and all moments must balance). Consequently, for a solution to be found, there can 

be three unknowns. This means, if the solution of a structure is statically determinable, the structure 

is termed as statically determinate. However, virtually all real structures have more than three 

unknowns, which cannot be solved by the three equations of equilibrium alone. Hence, if the 

solution of a structure is not statically determinable, the structure is termed as statically 

indeterminate. Therefore, the degree of static indeterminacy (DSI) is the number of redundant 

forces (i.e., extra forces) present in the structure more than required for mere equilibrium. It 

represents the difference between the number of static unknowns (reactions and internal forces) 

and the number of static equations (equilibrium equations). For a given structure the degree of static 

indeterminacy is unique, but redundant forces can be different. 

 

Figure 1.2 Interrelation of basic equations 

External forces 

Stresses 

Displacements 

Strains 

Equilibrium equations Compatibility equations 

Constitutive laws 
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There is another allied concept called kinematic indeterminacy, which is usually associated 

with degrees of freedom (i.e., independent co-ordinates required to define the displaced 

configuration of structure). Theoretically, a structure has infinite degrees of freedom, because it is 

a continuum. However, in a skeletal structure, the actual degrees of freedom are limited to the ones 

at the joints where different joint elements converge. Therefore, the degree of kinematic 

indeterminacy (DKI) is defined as the total number of degrees of freedom at the various joints in a 

skeletal structure. 

Methods of structural analysis are broadly grouped in to two categories, namely flexibility 

methods and stiffness methods. The flexibility methods use the degree of static indeterminacy while 

the stiffness methods use the degree of kinematic indeterminacy. Since the degree of indeterminacy 

decides the complexity of computations involved during the solution process, it is wise to adopt an 

appropriate method of analysis by appraising both the indeterminacies. Table 1.1 presents the 

details of degrees of static and kinematic indeterminacies for different beam structures.  

Table 1.1 Beams with indeterminacies 

Type of beam DSI DKI 

Cantilever beam 

(Fixed at A & free at B)  
0 2  B B&   

Simply supported beam 

(Hinge at A & Roller at B)  
0 2  A B&   

Propped cantilever beam 

(Fixed at A & Roller at B)  
1 1  B  

Fixed beam 

(Fixed at A & B)  
3 0 

1.5 Loads 

Loads act on a structure, causing it to undergo internal stresses and displacements, which the 

structure should be able to withstand satisfactorily meeting the requirements of stability, strength 

and serviceability.  Although many types of loads exist, some of the commonly applied loads are 

shown in Figure 1.3.  Predominant function due to the action of forces decides whether the elements 

of structures are compression members, tension members, or flexural members. For example, the 

vertical gravity load (both dead and live loads) on the floors and roof slabs in a framed structure is 

transmitted sequentially through beams, columns, and footings to the supporting ground under 

normal conditions. Since the load on the slab and beams is laterally applied, these elements are 

subjected to a bending nature and hence called flexural members. Similarly, the columns are called 

compression members due to the axial load action (sometimes, bending may also be present in 

columns).  

A B 

A B 

A 
B 

A B 
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Figure 1.3 Types of loads applied on structural elements 

1.6 Supports 

Structural elements are assembled to make a whole structure which is supported on ground in such 

a way that the load is transmitted through the supports. In turn, the supports develop reactions 

depending on the nature of support conditions. For example, if the support restrains linear 

movements in a particular direction, then a reaction is developed in the opposite direction. 

Similarly, the support offers moment reaction when the rotational movement is restrained. Figure 

1.4 presents a few types of supports and their respective reaction components. In case of a fixed 

support, as the support restrains all the movements, it offers resistance in horizontal, vertical and 

rotational directions by developing H, V and M respectively. Hinged support permits the member 

to rotate freely, hence no resistance is observed in the rotational direction. However, it offers 

resistance to both horizontal and vertical directions by developing H and V respectively. Roller 

support permits the member to rotate freely in rotational direction, and to move freely horizontal 

direction, hence no resistance is observed in those directions. Therefore, it offers resistance only to 

vertical direction by developing V. Another type of support called guided-fixed support offers 

resistance to horizontal and rotational directions, but not in vertical direction, hence H and M are 

developed. 

PP

Uniaxial tension

P P

Uniaxial compression

yP

yP

xPxP

Biaxial load

xP

xP

yP

yP

zP

zP

Triaxial load

M

Concentrated moment 

W

Lateral point load

SS

Shearing force

w

Uniformly distributed load

w

Uniformly varying load
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Figure 1.4 Supports with their reaction components 

1.7 Free-Body Diagram 

A free-body diagram is a figure that symbolically represents the structure without physical 

attributes like supports. For example, if a structure (or element) is supported on the ground (or 

wall), then the idealized model will have the appropriate reactions in place of the physical supports 

so that the analysis can be performed. An example is shown in Figure 1.5, where supports at A and 

B in the original beam are replaced with respective reactive forces in the free-body diagram. 

 

Figure 1.5 Free-body diagram 

1.8 Concept of Stress 

At the rudimentary level of understanding, stress and strain are defined in the context of an axial 

tensile test of a longitudinal specimen. If xF  is the axial tensile force applied through the centroid 

of a specimen with cross-sectional area xA , the corresponding axial stress x  is defined as  

x
x

x

F

A
   (1.1) 

in which, the subscript “x” indicates that both force and cross-section face in the direction of the 

longitudinal axis of the member.  

Because the member elongates when acted on by the tensile force, the concept of axial strain 

is as a measure of the change in length. The axial strain x is defined as 

AH

AV

AM

BV

A

B
L

L

(i) Propped cantilever beam 

(ii) Free-body diagram 

w

w

H

V

M

(i) Fixed support

H

V

(ii) Hinged support

V

(iii) Roller support

H

M

(iv) Guided-fixed support
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0

x

L

L


   (1.2) 

in which L  is the experimentally measured extension that occurs in the pre-established reference 

length 0L , termed the gauge length. 

The axial stress and axial strain (Eq. 1.1 and Eq. 1.2) are average values. The stress is averaged 

over the cross-sectional area, and the strain is averaged over the gauge length. In this sense, the 

stress is considered to be “uniformly distributed over the cross section”, and the strain is considered 

to be “constant over the gauge length”.  

Consider a member made-up of fibres (represented by dotted lines) arranged along the 

longitudinal direction as shown in Figure 1.6.  

 

Figure 1.6 Member with represented fibres 

If a load P  is applied at the centroid (i.e., at O) in the direction of the longitudinal axis (i.e., 

X), then each fibre is considered to be subjected to the same magnitude. At the same time, the 

applied load is internally resisted at each point in the fibre, and this force is called stress, which is 

equal at all points. This is called direct stress, 0 . Incidentally, all fibres will shorten or elongate 

equally depending on the nature of concentrated load applied (i.e., compression or tension 

respectively). 

If a load P  is applied at a point other than the centroid (i.e., eccentric), then the fibres will not 

have an equal displacement. Moreover, some fibres may experience shortening while some may 

have expansion, which leads to the bending of fibres in a lateral direction. The corresponding stress 

is called bending stress, b .  

This kind of phenomenon can also be evidenced when the load is laterally applied on the length 

(i.e., in the Y or Z direction). But, another kind of stress across the section, called shear stress, is 

also developed in this case. It is noted that direct and bending stresses will act perpendicular to the 

section whereas shear stress will act along the section. Therefore, the resultant stress is obtained by 

combining the direct and bending stresses as  

0 b     (1.3) 

where 0  is the direct stress, and b  is the bending stress. Here, b  takes positive or negative 

depending on the fibre whether it is under compression or tension due to the bending. 
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1.9 Analysis of Vertical Members 

In structures, the loads acting on beams are transmitted to the supporting medium through vertical 

members like columns. Columns are predominantly subjected to axial compression, and they can 

be circular, square, rectangular, standard or built-up section in their cross sections. 

1.9.1 Analysis of Axially Loaded Members 

If the axis of load coincides with the longitudinal axis of the member, then the load applied is called 

axial or direct load, and the member is called axially loaded member. Consider a vertical member 

(e.g., column) of rectangular section supported at the base and loaded at the top as shown in Figure 

1.7. Since the load is applied at the centroid of the section, the stress developed at the fibres is 

uniform, which is equal to 

x
x

x

F

A
   (1.4) 

where xF  is the axial force applied through the centroid, and xA  is the cross-sectional area. By 

substituting the axial compressive load ( P ) and the cross-sectional area ( b d ), Eq. (1.4) becomes: 

0

P

b d
 


 (1.5) 

where 0  is the direct stress (compression). The distribution of stress at the edges across breadth 

and width directions are also shown in Figure 1.7. 

 

Figure 1.7 Stress distribution of axially loaded member 
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1.9.2 Analysis of Eccentrically Loaded Members 

If the axis of load does not coincide with the longitudinal axis of the member (i.e., the load is 

applied at a distance “ e ” from the centroid), the member is called an eccentrically loaded member. 

Consider a column of rectangular section supported at the base and loaded at the top as shown in 

Figure 1.8. Since the load is eccentrically applied, it will bend the member, which will result in 

non-uniform stress distribution across the section. The bent configuration of the member in one 

direction is also shown in Figure 1.8 so as to visualise the effects of bending due to which the 

extreme faces are subjected to compression and tension.  

 

Figure 1.8 Eccentrically loaded member 

To understand the effects of eccentric loads, let a load P  act eccentric to one axis as shown in 

Figure 1.9(i).  

 

Figure 1.9 Load acting eccentric to one axis 
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The evolution of the resultant stresses due to the eccentric load can be realized as follows. 

i) Assume two equal and opposite loads (equal to P ) are introduced in the axis of the member 

(Figure 1.9(ii)). As these loads cancel out each other, their introduction does not make any 

difference to the actual loading of the member. 

ii) The above scenario is effectively the same as the combination of Figure 1.9(iii) and Figure 

1.9(iv).   

iii) Figure 1.9(iii) results in the direct stress (i.e., uniform compressive stress across the 

section), and Figure 1.9(iv) results in the bending stress due to the clockwise couple of 

magnitude P e .  

iv) Therefore, an eccentric load produces direct stress (in this case, compression) as well as 

the bending stress. The bending stress due to moment M P e   is obtained from the simple 

theory of bending equation as  

b

M

Z
   (1.6) 

where Z  is the section modulus about the axis of bending. The value of b  can be positive or 

negative depending on the nature of bending. Therefore, the resultant stress is obtained as 

0 b

P P e

b d Z
  


   


 (1.7) 

If compressive stress is considered as positive and tensile stress is considered negative, for the load 

acting eccentric to one axis, the resultant stresses are calculated as  

Stress at B, 0 b     

Stress at A, 0 b     

In this case, stress at B (i.e., max ) is certainly compressive. However, stress at A (i.e., min ) will 

offer three possibilities as shown in Figure 1.10. If 0b  , then min 0  . If 0b  , then min  

will also be positive, hence compression. If 0b  , then min  will be negative, hence the tension. 

 

Figure 1.10 Resultant stress distribution possibilities 

Similarly, assume that the load is acting eccentric to both axes (i.e., X and Y) as shown in Figure 

1.11. Since the load is assumed to be acting in the first quadrant, both eccentricities ( xe and ye ) are 

considered positive.  

0(iii) b 
min

max

b

b

0

0(ii) b 

b

min

b

0
max

0   
0(i) b 

min 0 

b

max
b

0
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Figure 1.11 Load acting eccentric to both axes 

The system can be assumed to consist of the following. 

i) An axial load P  acting at the centroid. This results in the direct stress, 
0

P

b d
 


 

ii) A couple xP e  about X-axis. This results in the bending stress, 
x

x
b

xx

P e

Z



  

iii) A couple yP e  about Y-axis. This results in the bending stress, 
y

y

b

yy

P e

Z



  

Therefore, stress at any point is given by  

yx

xx yy

P eP eP

b d Z Z



  


 (1.8) 

where  

xe  is the eccentricity measured from XX-axis in Y-direction 

ye  is the eccentricity measured from YY-axis in X-direction 

xxZ  is the section modulus about XX axis, 

2

6
xx

bd
Z   

yyZ  is the section modulus about YY axis, 

2

6
yy

db
Z   

1.9.3 Neutral Axis 

In the resultant stress distribution diagram, when both compressive and tensile stresses are present, 

and in between these stresses, there is a layer of fibres which has neither compression nor tension. 

This layer is called the neutral layer or neutral surface. The intersection of this neutral surface with 

the axial plane of symmetry is called the neutral axis. At the neutral axis, the stress is zero. 
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1.9.4 Condition for No Tension 

Most of the vertical members are subjected to compression, as the predominant action of these 

members is to transmit the load coming from the structure above to the ground which is the 

direction of gravity. Therefore, effective utilization of materials (e.g., stone, timber, brick etc.) for 

constructing such members fulfils the development of compression with no tension as these 

materials are relatively weak in tension. This necessitates limiting the eccentricity “ e ” to a certain 

value for different sections.  

From Eq. (1.7), when the vertical members are subjected to compressive loads (i.e., the load is 

applied at the top in a downward direction), the resultant stress is the combination of direct stress 

(always compression) and bending stress (compression or tension, depending on the eccentricity). 

Therefore, bending stress is the deciding factor for transiting compression into tension. 

If b  exceeds 0 , the resultant stress ( ) in Eq. (1.7) results in a tensile stress in one layer. 

Hence, 0b   should be the required condition to ensure no tension across the section. 

0b     
P e P

Z A


  (1.9) 

Z
e

A
  (1.10) 

Eq. (1.10) means, xx
x

Z
e

A
  and 

yy

y

Z
e

A
 . 

The above expression can also be written in terms of radius of gyration as 

P e P

Z A


    

P e P

I y A


   

2( )

P e P

A r y A





 (1.11) 

2r
e

y
  (1.12) 

where “ r ” is the radius of gyration with regard to neutral axis and “ y ” is the distance of extreme 

fibre from the neutral axis. 

For a rectangular section the limiting value of eccentricity to ensure no tension conditions can 

be obtained as 

xx
x

Z
e

A
    

 2 6
x

bd
e

bd
  (1.13) 

6
x

d
e   (1.14) 
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Similarly, 
yy

y

Z
e

A
    

 2 6
y

db
e

bd
  

6
y

b
e   (1.15) 

Thus, the value of eccentricity can be on either side of the geometrical axis, which means, if 

the load line is within the middle third of the section  i.e., 6 6 3 and 6 6 3d d d b b b    , 

the resultant stress will ensure no tension condition. This is called the middle third rule. 

Similarly for solid circular sections, the limiting values of eccentricity to ensure no-tension, is 

8D , where D  is the diameter of section. If the load acts within the middle quarter 

 i.e., 8 8 4D D D  , the resultant stress will ensure no tension condition. Hence, this is called 

the middle quarter rule.  

In a similar way, for hollow circular sections, the limiting values of eccentricity to ensure no 

tension is 
2 2 2 2

8 8

D d D d
e

D D

  
   
 

 (where D  is external diameter and d  is internal diameter). 

1.9.5 Core of a Section 

For a given cross-section, it is of interest to define a region around the centroid within which the 

load P  will induce compression over the entire section. This region is called the core or Kernel of 

the section. For the rectangular section, the core is as shown in Figure 1.12. Therefore, the core of 

the rectangular section is the area of the shaded portion. 

1
Core of rectangle 4

2 6 6

18

b d

bd

 
    

 



 

 

Figure 1.12 Core of rectangular section 
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1.9.6 Numerical Examples 

Example 1.1: A rectangular column of breadth 300 mm and width 200 mm carries a load of 120 

kN at an eccentricity of 80 mm in a plane bisecting the width. Find the maximum and minimum 

stresses in the section. 

Solution:  

The eccentricity is with respect to Y-axis as shown in Figure 1.13(i). Therefore, the moment causing 

the bending stress is 
y yM P e  . 

Since the load is applied with an eccentricity in one direction, the fibre BC develops 

compressive stresses due to both direct and bending actions, and the fibre AD develops compressive 

stress due to direct action and tensile stress due to bending action. The resultant stress is obtained 

using the following formulas. 

BC

y

yy

P eP

A Z



    

AD

y

yy

P eP

A Z



   

where 
3120 kN 120 10  NP     

3 2300 200 60 10  mm
A b d 
   

 

80 mmye   

2

2
6 3

6
200(300)

3 10 mm
6

yy

db
Z 

  

 

 33

BC 3 6

2

120 10 (80)120 10
 

60 10 3 10

2.0 3.2 5.2 N/mm  (compression)




 
 

  

 

 33

AD 3 6

2

120 10 (80)120 10
 

60 10 3 10

2.0 3.2 1.2 N/mm  (tension)




 
 

   

 

The stress distribution is shown in Figure 1.13(ii). The distribution is same for the fibre DC. 

The subscript BC in BC   indicates that the stress obtained is uniform from B to C  
2(i.e.,  5.2 N/mm ) , and similarly, the subscript AD in AD   indicates that the stress obtained  is 

uniform from A to D (i.e., 21.2 N/mm ). Therefore, the maximum stress is 25.2 N/mm

(compression), and the minimum stress is 21.2 N/mm  (tension). 
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Figure 1.13 Section and stress distribution (Example 1.1) 

 

Example 1.2: A rectangular column of breadth 300 mm and width 200 mm carries a load of 120 

kN at an eccentricity of 30 mm in a plane bisecting the width. Find the maximum and minimum 

stresses in the section. 

Solution:  

The eccentricity is with respect to Y-axis as shown in Figure 1.14(i). Therefore, the moment causing 

the bending stress is y yM P e  . 

Similar to Example 1.1, the fibre BC develops compressive stresses due to both direct and 

bending actions, and the fibre AD develops compressive stress due to direct action and tensile stress 

due to bending action. The resultant stress is obtained using the following formulas. 

BC

y

yy

P eP

A Z



   and 

AD

y

yy

P eP

A Z



   

where 
3120 kN 120 10  NP     

3 2300 200 60 10  mmA b d       

30 mmye  

2 6 36 3 10 mmyyZ db    

 33

BC 3 6

2

120 10 (30)120 10
 

60 10 3 10

2.0 1.2 3.2 N/mm  (compression)




 
 

  

 

(i) Cross section 

(ii) Stress distribution across AB  
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 33

AD 3 6

2

120 10 (80)120 10
 

60 10 3 10

2.0 1.2 0.8 N/mm  (compression)




 
 

  

 

  

Figure 1.14 Section and stress distribution (Example 1.2) 

The stress distribution is shown in Figure 1.14(ii). The distribution is same for the fibre DC. 

The subscript BC in BC   indicates that the stress obtained is uniform from B to C 2(i.e.,  3.2 N/mm )

, and similarly, the subscript AD in AD   indicates that the stress obtained  is uniform from A to D 

(i.e., 20.8 N/mm ). Therefore, the maximum stress is 23.2 N/mm (compression), and the minimum 

stress is 20.8 N/mm (compression). Unlike in Example 1.1, the resultant stress at all fibres is 

compressive. 

 

Example 1.3: A rectangular column of breadth 300 mm and width 200 mm carries a load of 120 

kN at an eccentricity of 50 mm in a plane bisecting the width. Find the maximum and minimum 

stresses in the section. 

Solution:  

Here the eccentricity is with respect to Y-axis as shown in Figure 1.15(i). Therefore, moment 

causing the bending stress is y yM P e  . 

Similar to Example 1.1, the fibre BC develops compressive stresses due to both direct and 

bending actions, and the fibre AD develops compressive stress due to direct action and tensile stress 

due to bending action. The resultant stress is obtained using the following formulas. 

BC

y

yy

P eP

A Z



   
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(ii) Stress distribution across AB 
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AD

y

yy

P eP

A Z



   

where 
3120 kN 120 10  NP     

3 2300 200 60 10  mm     A b d  

50 mmye  

22
6 3200(300)

3 10 mm
6 6

   yy

db
Z  

 33

BC 3 6

2

120 10 (50)120 10
 

60 10 3 10

2.0 2.0 4.0 N/mm  (compression)




 
 

  

 

 33

AD 3 6

2

120 10 (50)120 10
 

60 10 3 10

2.0 2.0 0 N/mm




 
 

  

 

The stress distribution is shown in Figure 1.15(ii), and the distribution is same for the fibre DC. 

The subscript BC in BC   indicates that the stress obtained is uniform from B to C (i.e., 
24.0 N/mm ) , and similarly, the subscript AD in AD   indicates that the stress obtained is uniform 

from A to D (i.e., 20 N/mm ). Therefore, the maximum stress is 24.0 N/mm (compression), and the 

minimum stress is 20 N/mm . Unlike in Example 1.1, the resultant stress, no tensile stress is resulted 

and stress is zero at one fibre. 

  

Figure 1.15 Section and stress distribution (Example 1.3) 

 

(i) Cross section 

(ii) Stress distribution across AB 

24 N/mm

0 

b
Y

X

P

ye
d

A B

CD

300 mm

200 mm

X
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Note:  

i) In Examples 1.11.3, all the data except the value of eccentricity are same. The different 

values of bending stresses due to different eccentricities offered three possibilities of 

resultant stresses as explained in Figure 1.10. 

ii) If the load was applied eccentrically in a plane bisecting the breadth, then the bending stress 

would be  xx xM P e , and the corresponding bending stress would be 
x xxPe Z , where 

2 6xxZ bd . These stresses need to be computed in the fibres AB and DC. Hence the stress 

variation would be across BC, which is same as AD. 

 

Example 1.4: A rectangular column of breadth 300 mm and depth 200 mm carries a load of 120 kN 

at an eccentricity of 90 mm and 75 mm with respect to YY and XX axes respectively as shown in 

Figure 1.16. Find the resultant stresses at extreme corners, and draw the distribution along all four 

edges. 

  

Figure 1.16 Section with biaxial load (Example 1.4) 

Solution:  

Since the eccentricity is with respect to both the axes, the moments causing the bending stress are 

x xM P e   and 
y yM P e  . 

As seen in the previous example, the compressive stresses are developed on all edges as direct 

stress. Independently, xM  causes the bending stress (compression) in fibre AB and bending stress 

(tension) in fibre CD. Similarly, 
yM  causes the bending stress (compression) in fibre CB and 

bending stress (tension) in fibre AD. This act of biaxial bending results in non-uniform stresses on 

all four edges. Hence, stresses need to be calculated at the corners to obtain the distribution of 

stresses along the edges. 

Resultant stresses at the corners yx

xx yy

P eP eP

A Z Z


    

 

Y

b

Y

X

Pye
d

A B

CD

300 mm

200 mm

X
xe

O



Theory of Structures| 19 

 
where 

3120 kN 120 10  NP     
2300 200 60000 mm    A b d  

75 mmxe ; 90 mmye  

3 6120 10 75 9.0 10  Nmmx xM P e      

 3 6120 10 90 10.8 10  Nmmy yM P e        

22
6 3300(200)

2 10 mm
6 6

   xx

bd
Z  

22
6 3200(300)

3 10 mm
6 6

   yy

db
Z  

3
2

3

120 10
2.0 N/mm

60 10

P

A


 


 

6
2

6

9 10
4.5 N/mm

2 10

x

xx

M

Z


 


 

6
2

6

10.8 10
3.6 N/mm

3 10

y

yy

M

Z


 


 

Stress at A, A

yx

xx yy

MMP

A Z Z
     

22.0 4.5 3.6 2.9 N/mm  (compression)     

Stress at B, B

yx

xx yy

MMP

A Z Z
     

22.0 4.5 3.6 10.1 N/mm  (compression)     

Stress at C, C

yx

xx yy

MMP

A Z Z
     

22.0 4.5 3.6 1.1 N/mm  (compression)     

Stress at D, D

yx

xx yy

MMP

A Z Z
     

22.0 4.5 3.6 6.1 N/mm  (tension)      

The stress along the edge AB varies from 22.9 to 10.1 N/mm , and across the edge DC it varies 

from 26.1 to 1.1 N/mm . Similarly, in the other direction, the stress varies from 210.1 to 1.1 N/mm

across the edge BC, and 26.1 to 10.1 N/mm  across the edge AD. These stress distributions are 

shown in Figure 1.17. All positive stress values are considered compressive and negative stress 

values are considered tensile. 
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Figure 1.17 Stress distribution across the edges (Example 1.4) 

 

Example 1.5: A hollow rectangular column with external dimensions of 1500×2500 mm and 

internal dimensions of 900×1600 mm carries a compressive load of 1500 kN at an eccentricity of 

700 mm in a plane bisecting the breadth. Find the maximum and minimum stresses in the section. 

Solution:  

The eccentricity is with respect to X-axis as shown in Figure 1.18(i). Therefore, the moment causing 

the bending stress is x xM P e  . 

Since the load is applied with an eccentricity in one direction, the fibre CD develops 

compressive stresses due to both direct and bending actions, and the fibre AB develops compressive 

stress due to direct action and tensile stress due to bending action. The resultant stresses along the 

extreme fibres are obtained using the following formulas. 

The maximum stress, 
CD

x

xx

P eP

A Z



    

The minimum stress, 
AB

x

xx

P eP

A Z



   

where 
31500 kN 1500 10  NP     

  6 21500 2500 900 1600 2.31 10  mmA B D b d           

700 mmxe   

3 3 3 3
9 31 1 1500 2500 900 1600

1.31674 10 mm
6 6 2500

xx

BD bd
Z

D

      
      

   
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Stress at fibre CD, 
 33

CD 6 9

1500 10 (700)1500 10

2.31 10 1.31674 10



 

 
 

20.649 0.797 1.446 N/mm  (compression)    

Stress at fibre AB, 
 33

AB 6 9

1500 10 (700)1500 10

2.31 10 1.31674 10



 

 
 

20.649 0.797 0.148 N/mm  (tension)     

The stress distribution is shown in Figure 1.18(ii). The maximum stress is 21.446 N/mm

(compression), and the minimum stress is 20.148 N/mm (tension). 

 

 Figure 1.18 Section and stress distribution (Example 1.5) 

 

Note:  

The load applied in the hollow portion does not necessarily mean that the load is not transmitted 

through the column. Similarly, the stress will exist at the base under the hollow portion as shown 

in Figure 1.18(ii). However, the stress distribution needs to be represented only for the solid portion 

when the distribution is drawn at a section other than the base (e.g., at mid-height).  

 

Example 1.6: If a solid circular column of diameter 450 mm is subjected to a load of 200 kN at the 

outer edge, determine the maximum and minimum stresses in the section. 

Solution:  

Since the load is applied at the outer edge of circle, the eccentricity is the same at all the edges from 

the centroid of the circular section. Therefore, the maximum stress (i.e., compression) occurs at the 

location of load, and the minimum stress (i.e., tension) occurs at the opposite edge of the circular 

section. Let the eccentricity be considered with respect to Y-axis as shown in Figure 1.19(i).  

Y

X
xe

A B

CD

2500
X

900

1500 mm

1600

P

0.148 

21.446 N/mm

(i) Cross-section (ii) Stress distribution
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max D

y

yy

P eP

A Z
 


     

min B

y

yy

P eP

A Z
 


    

where 
3200 kN 200 10 N  P  

2 2
3 2(450)

159.043 10  mm
4 4

D
A

 
     

225 mmye  

3 3
6 3(450)

8.946 10 mm
32 32

yy

D
Z

 
     

Stress at D, 
 33

D 3 6

200 10 (225)200 10

159.043 10 8.946 10



 

 
 

21.258 5.030 6.288 N/mm  (compression)    

Stress at B, 
 33

B 3 6

200 10 (225)200 10

159.043 10 8.946 10



 

 
 

21.258 5.030 3.772 N/mm  (tension)     

The stress distribution across DB is shown in Figure 1.19(ii). 

  

Figure 1.19 Section and stress distribution (Example 1.6) 

 

(ii) Stress distribution across AB 

23.772 N/mm

6.288 

(compression)

(tension)

(i) Cross section 

Y

X
P

A

B

C

D

450 mm
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Example 1.7: A hollow circular column of outer diameter 450 with 75 mm thickness is subjected 

to a load of 200 kN applied at an eccentricity of 100 mm with respect to X-axis. Find the maximum 

and minimum stresses in the section. 

Solution:  

The eccentricity is with respect to X-axis as shown in Figure 1.20(i). The maximum stress at A and 

minimum stress at C are calculated using the following formulas. 

max A
x

xx

P eP

A Z
 


    and 

min C
x

xx

P eP

A Z
 


    

where 
3200 kN 200 10 N  P  

100 mmxe   

   2 2 2 2

3 2
450 300

88.357 10  mm
4 4

D d
A

  
     

   4 4 4 4

6 3
450 300

7.179 10 mm
32 32(450)

xx

D d
Z

D

  
     

Stress at A, 
 33

A 3 6

200 10 (100)200 10

88.357 10 7.179 10



 

 
 

22.264 2.786 5.050 N/mm  (compression)    

Stress at C, 
 33

C 3 6

200 10 (100)200 10

88.357 10 7.179 10



 

 
 

22.264 2.786 0.522 N/mm  (tension)     

The stress distribution across AC at the base is shown in Figure 1.20(ii).  

 

Figure 1.20 Section and stress distribution (Example 1.7) 

 

Y

X

A

B

C

D

30075 75

25.05 N/mm

0.522 

P

(i) Cross-section (ii) Stress distribution
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Example 1.8: A rectangular column of 300×450 mm is subjected to an anti-clockwise moment of 

5 kNm about X-axis. Find the maximum and minimum stresses in the section. 

Solution:  

The column is not subjected to any axial or eccentric loads as shown in Figure 1.21(i). Therefore, 

no direct stress is developed at the base. However, the moment applied causes bending stresses. 
The maximum and minimum stresses at the opposite sides are obtained as follows. 

x

xx

MP

A Z
    

Stress at fibre AB, 
 

6

AB 2

5 10
0

300 450 6



 


 

20.494 N/mm  (compression) 

Stress at fibre CD, 
 

6

CD 2

5 10
0

300 450 6



 


 

20.494 N/mm  (tension) 

Since the magnitude of the stress is same at the two opposite edges, the maximum compressive and 

tensile stresses are equal to 20.494 N/mm . The stress distribution at the base is shown in Figure 

1.21(ii) 

 

Figure 1.21 Section and stress distribution (Example 1.8) 

 

Example 1.9: A rectangular column of 300×450 mm is subjected to a load of 10 kN at the mid-

point of extreme fibre DC and an anti-clockwise moment of 5 kNm about X axis as shown in Figure 

1.22(i). Find the maximum and minimum stresses in the section. 

Solution:  

The point load (i.e., 10 kN) causes the direct stress (compression) across the entire section. It also 

develops a clockwise moment of 2.25 kNm (i.e., 100.225) which causes the bending stress 

(compression) in fibre DC and the bending stress (tension) in fibre AB. In addition, the moment 

Y

X

xM

A B

CD

300 mm

450 mm

X

20.494 N/mm

20.494 N/mm

(i) Cross-section (ii) Stress distribution
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applied (i.e., 5 kNm) causes bending stress (compression) in fibre AB and bending stress (tension) 

in fibre DC.  

Therefore, the resultant stresses are calculated using the following formula. 

x x

xx xx

P e MP

A Z Z



    

Stress at fibre AB, 
 
   

33 6

AB 2 2

10 10 (225)10 10 5 10

(300 450) 300 450 6 300 450 6


 
  

  
 

20.074 0.222 0.494 0.346 N/mm     (compression) 

Stress at fibre DC, 
 
   

33 6

DC 2 2

10 10 (225)10 10 5 10

(300 450) 300 450 6 300 450 6


 
  

  
 

20.074 0.222 0.494 0.198 N/mm     (tension) 

The maximum stress is 20.346 N/mm (compression) at the extreme fibre AB and  the minimum 

stress is 20.198 N/mm (tension) at the extreme fibre DC as shown in Figure 1.22(ii). 

 

Figure 1.22 Section and stress distribution (Example 1.9) 

 

Note:  

In the numerical examples, the nature of bending stress is diagnosed by realising the moment 

whether it causes the compression or the tension. The results can also be obtained by properly 

substituting the coordinates of eccentricity (i.e., + or –) in the resultant stress equation as 

yx

xx yy

P eP eP

A Z Z



   . 

 

Y

X

xM

A B

CD

300 mm

450 mm

X

20.346 N/mm

20.198 N/mm

P

(i) Cross-section (ii) Stress distribution



26 | Direct and Bending Stresses 

 
Example 1.10: A column of 300×300 mm is made up of concrete with maximum allowable 

compressive stress of 25 N/mm2 and maximum allowable tensile stress of 3.5 N/mm2. Find the 

greatest load that can be applied with an eccentricity limited to 75 mm on the column. 

Solution:  

Since the maximum and minimum stresses are limited to 25 N/mm2 (compression) and 3.5 N/mm2 

(tension) respectively, the appropriate formulas can be used as follows. 

max 25.0
P P e

A Z



     

min 3.5
P P e

A Z



     

From the maximum stress equation, 

 

 

 2

75
25.0

300 300 300 300 6

PP
 

 
  

3900 10  NP    

Similarly, from the minimum stress equation, 

 

 

 2

75
3.5

300 300 300 300 6

PP
  

 
  

3630 10  NP    

When 3900 10  NP    is applied, the opposite extreme fibres will result in 225.0 N/mm

(compression) and  25.0 N/mm (tension). In this case, even though the compressive stress is within 

the allowable value (
2

compression 25.0 N/mm  ), the tensile stress (5.0 N/mm2) exceeds the 

allowable value (i.e., 
tension ≰ 23.5 N/mm ), which is not desirable.  

On the other hand, when 3630 10  NP    is applied, the opposite extreme fibres will result in 
217.5 N/mm (compression) and 23.5 N/mm (tension), which satisfies the conditions. Therefore, the 

greatest load that can be applied safely is 3630 10  NP   . 

 

Example 1.11: A steel column shown in Figure 1.23 carries a vertical compressive load of 2100 

kN. Find the maximum allowable eccentricity of the load from X-axis (
xe ) if the maximum tensile 

stress is not to exceed 200 N/mm2. 
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Figure 1.23 Steel column with I-section (Example 1.11) 

Solution:  

Since the tensile stress is limited to 200 N/mm2, the eccentricity can be obtained from the following 

formula. 

200x

xx

P eP

A Z


    

where 
32100 kN 2100 10 NP     

  2100 10 10 130 100 10 3300 mmA        

As the section is symmetrical about both the axes, the moment of inertial can be obtained by 

considering the section as hollow rectangular section with 100×150 mm as outer dimensions and 

90×130 mm as inner dimensions. 

   3 3

6 4
100 150 90 130

11.6475 10 mm
12

xxI
  

    

 
3 3155.3 10 mm

150 2

xx
xx

I
Z     

 33

3

2100 102100 10
200

3300 155.3 10

xe 
  


 

636.364 13.522 200xe    

61.852 mmxe   

The limiting value of eccentricity from the X-axis is 61.852 mm to satisfy the allowable tensile 

stress criterion. If the same example were to be solved by limiting the maximum compressive stress 

of 200 N/mm2, then the eccentricity would be 32.271 mm.  

 

 

 

xe

X

P

100 mm

Y

150 mm

10 mm

10 mm

10 mm
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Note:  

For the built-up sections, the moment of inertia can be determined by applying the parallel axis 

theorem. 

 

1.10 Analysis of Chimney 

Vertical structural elements like chimneys, pillars and walls are subjected to wind pressure. This 

wind pressure induces loads on the elements that will depend on the angle at which the wind strikes, 

and the shape of the exposed surface. The weight of the structure causes direct stress (compression) 

while the wind load introduces bending moment leading to bending stresses at the base.  

Wind force ( P ) is equal to the product of the intensity of wind pressure ( p ) and the surface 

area ( eA ) exposed to wind as shown in Figure 1.24.  

 

Figure 1.24 Wind pressure on chimney 

However, this wind force is obtained by introducing the coefficient of wind resistance ( k ) 

when the pressure acts on circular or inclined surfaces. If the wind pressure is assumed to be 

uniform on the entire surface, the wind force can be considered to be concentrated at the centroid 

of the exposed area. 

 

Cross-section 

CD

A Bb

d

X

Y

Z

Elevation 

h

p

P
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eP k p A    (1.16) 

where P  is concentrated wind force, p  is wind pressure, and eA  is exposed area. The coefficient 

of wind resistance is obtained as 

2sink   (1.17) 

where   is the angle of wind direction with the surface. If the wind pressure is acting perpendicular 

to a flat surface, then 1k  . For inclined surfaces (e.g., 45   ), 0.5k  , and for circular surfaces, 

2 3k  . 

Mostly, chimneys are massive in nature. Hence, the weight of the chimney acts as a 

compressive vertical load which causes direct stress, and the wind force acts as horizontal (lateral) 

load causing the bending stress at the base. The resultant stress is obtained using the following 

formula.  

W M

A Z
    (1.18) 

where W V    is the weight of the structure 

V  is the volume of the structure, 

  is the density of the structure, 

A  is the area of cross-section, 

M  is the moment due to wind force, 

Z  is the section modulus about the axis of bending. 

 

1.10.1 Numerical Examples 

Example 1.12: A square chimney of 12.5 m high has an opening of 1.2×1.2 m inside. The wall 

thickness is 450 mm. If the horizontal wind pressure is 1.1 kN/m2 and the weight density of chimney 

is 18 kN/m3, determine the maximum and minimum stresses at the base. 

Solution:  

The dimensions of the chimney are shown in Figure 1.25. Let the wind pressure act on the side AD.  

 

Figure 1.25 Section of hollow square chimney (Example 1.12) 

A B 

C D 

450 mm 

450 mm 

1200 mm 
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The weight of chimney causes the direct stress (compression) at base throughout the section, 

and the wind force causes bending stresses at the base, precisely compression at fibre BC and 

tension at fibre AD. Therefore, the maximum stress will occur at BC and minimum stress will occur 

at AD. 

The maximum stress, max BC

yy

W M

A Z
      

The minimum stress, min AD

yy

W M

A Z
     

where  

Cross-sectional area,     2 6 22.1 2.1 1.2 1.2 2.97 m 2.97 10  mmA        

Weight,    2.97 12.5 (18.0) 668.25 kNW V A h         

Moment,  
2 2

e

h h
M P k p A      

 
12.5

1.0 1.15 (2.1 12.5) 188.672 kNm
2

 
     

 
 

Moment of inertia, 
   3 3

4
2.1 2.1 1.2 1.2

1.447875 m
12

yyI
  

   

Section modulus, 
 

3 9 31.37893 m 1.37893 10 mm
2.1 2

yy

yy

I
Z      

The maximum stress, 

3 6

max BC 6 9

668.25 10 188.672 10

2.97 10 1.37893 10
 

 
  

 
 

20.225 0.137 0.362 N/mm  (compression)    

The minimum stress,  

3 6

min AD 6 9

668.25 10 188.672 10

2.97 10 1.37893 10
 

 
  

 
 

20.225 0.137 0.088 N/mm  (compression)    

 

Example 1.13: A circular masonry chimney with an external diameter 1.2 m and internal diameter 

0.6 m is subjected to wind pressure 1.5 kN/m2.  Determine the maximum height of the chimney if 

the stress (compression) is limited to 120 kN/m2 at the base. Assume the unit weight of masonry is 

18 kN/m3. Also check whether the masonry is safe if no tension is allowed. 

Solution:  

Let the wind pressure act normal to D as shown in Figure 1.26. The weight of the chimney causes 

the direct stress (compression) at the base throughout the section, and the wind force causes bending 

stresses at B (compression) and at D (tension).  
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Figure 1.26 Wind pressure on chimney (Example 1.13) 

The maximum stress will occur at B and minimum stress will occur at D. 

max B

yy

W M

A Z
     

min D

yy

W M

A Z
     

Here, the height of chimney needs to be determined so that the maximum stress is 120 kN/m2. 

Therefore, 120
yy

W M

A Z
  . 

Let the height of chimney be “ h ” in metres.  

Cross sectional area, 
 2 2

2
1.2 0.6

0.848230 m
4

A
 

   

Area exposed to wind, 
21.2 1.2  meA h h    

Volume, 30.84823  mV A h h    

Weight,  0.84823 (18.0) 15.26814  kNW V h h     

Wind force,  
2

1.5 1.2 1.2  kN
3

eP k p A h h        

Moment due to wind force,   21.2 0.6  kNm
2 2

h h
M P h h     

Section modulus about Y-axis, 
 

 

 
 

4 4

4 464

2 2 32

yy

yy

D dI
Z D d

D D D






     

  4 4 31.2 0.6 0.159043 m
32(1.2)


    

 

C

D

A

B



32 | Direct and Bending Stresses 

 
Substituting the above values in 

max  expression: 

215.26814 0.6 
120.0

0.84823 0.159043

h h
   

23.772565 18.0 120.0 0h h    

By solving the quadratic equation,  3.738 (or) 8.509h    

Therefore, the height of chimney, 3.738 mh  , because 8.509h   is inadmissible. 

In order to determine the height of chimney for no-tension condition, the minimum stress at D 

should be zero.  

0
yy

W M

A Z
   

215.26814 0.6 
0 

0.84823 0.159043

h h
   

218.0 3.772565 h h  

4.771 mh   

Since the height already obtained (i.e, 3.738 m) is less than height required to develop tension 

(i.e, 4.771 m), the masonry with 3.738 mh   is safe. 

 

Note:  

The maximum and minimum stresses for different values of height are presented in Table 1.2. 

Table 1.2 Maximum and minimum stresses 

h   

(m) 

W A  

(kN/m2) 

M Z  

(kN/m2) 
max  

(kN/m2) 
min  

(kN/m2) 

8.0 144.0 241.4 +385.4 –97.4 

7.0 126.0 184.9 +310.9 –58.9 

6.0 108.0 135.8 +243.8 –27.8 

5.0 90.0 94.3 +184.3 –4.3 

4.771 85.9 85.9 +171.8 0 

4.0 72.0 60.4 +132.4 +11.6 

3.738 67.3 52.7 +120.0 +14.6 

3.0 54.0 34.0 +88.0 +20.0 
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From the above table, when the height is 3.738 m, the stress (compressive) at B reaches the limiting 

value (i.e., 120 kN/m2), while stress at D is also compressive (+14.6 kN/m2). However, when the 

height is 4.771 m, even though the stress at D satisfies the no-tension condition (i.e., 0 kN/m2), the 

stress (compressive) at B (i.e., 171.8 kN/m2) exceeds the limiting value of the material (i.e., 120 

kN/m2), which is not desirable.  

 

Example 1.14: Design a hollow rectangular chimney that develops no-tension at the base with the 

following details. 

Outer breadth of chimney B   

Outer depth of chimney, 2
3

D B  

Inner breadth of chimney, 2b B   

Inner depth of chimney, 2d D  

Height of chimney, 10h B  

Unit weight of chimney, 
324 kN/m   

Wind pressure acting on the shorter side, 
21.5 mp   

Solution:  

The design of chimney necessarily means obtaining the dimensions of the chimney by satisfying 

the given condition (i.e., no-tension at the base). Since only one condition is available to be 

satisfied, we can solve for only one unknown. In this case, all the geometric dimensions of the 

chimney can be represented in terms of outer breadth ( B ). 

0
yy

W M

A Z
   (1.19) 

Cross-sectional area,  A BD bd   

 2 2
32

.  
3 2 2 2

BB B
B B
 

     
 

 

Exposed area to wind, eA D h   

  22 20
10

3 3
B B B

 
  
 

 

Volume of chimney, V A h   
2

310 5
2

B
B B

 
   
 

 

Weight of chimney, W V    

  3 35 24.0 120B B   

Wind force,
eP k p A    

2 220
1.0 1.5 10

3
B B

 
    

 
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Moment due to wind force, 
2

h
M P

 
  

 
 

 2 310
10 50

2

B
B B

 
  

 
 

Section modulus, 
 2

yy

yy

I
Z

B
  

 
 

3 3 12

2

DB db

B


  

  
 

332 1 1
3

3 3 2
12 5

2 48

B B B B B

B

  
   

Substituting the above in Eq. (1.19) 

   

3 3

2 3

120 50
0 

2 5 48

B B

B B
   

2.0 mB   

Since, the value of B is known, all the remaining dimensions can be obtained. 

 
2 2

2.0 1.333 m
3 3

D B    

2.0
1.0 m

2 2

B
b     

1.333
0.667 m

2 2

D
d     

 

1.11 Analysis of Dams 

A gravity dam is a solid structure, generally made of masonry or concrete, constructed across a 

river to create a reservoir on its upstream. The forces acting on gravity dams such as self-weight, 

water pressure etc. are resisted by their own weight. Rectangular and trapezoidal are the commonly 

preferred shapes for solid gravity dams, and a typical section is shown in Figure 1.27. 

Analysis of dams involves the determination of stresses at the base, and checking the conditions 

of stability against tension, sliding and overturning by considering a unit length of the structure. 

The impounding water exerts pressure on the vertical wall in upstream side, and this pressure varies 

linearly from zero at the surface of water to h  at the bottom, where   is the unit weight of water, 

and h  is the height of water. Since the pressure distribution is a triangle, the horizontal thrust is the 

area of the distribution which acts at 3h  from the base. 
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Figure 1.27 A typical section of gravity dam 

1.11.1 Analysis of Rectangular Dam 

Consider a rectangular dam that retains water on one of its vertical sides as shown in Figure 1.28.  

 

Figure 1.28 Rectangular dam 

 

 

 

Y

d

b

X O

Cross-section at base

H

A B

CD

P

h

3

h

P

W R

2b2b

Z

h O

Sectional elevation



36 | Direct and Bending Stresses 

 
The weight of the dam acting vertically is obtained by 

   W V A H b d H           (1.20) 

where V  is the volume of the structure,   is the density of the structure, A  is the area of the 

structure resisting the weight, H  is the height of the structure, b  is the breadth of the structure and 

d  is the width of the structure (i.e., unit length in Y-direction). Since, the section is a rectangle, the 

centre of gravity 2x b  from point A. 

Lateral thrust on the dam acting horizontally is obtained by 

21 1

2 2
P h h h     (1.21) 

where   is the unit weight of water, and h  is the height of water retained.  

The dam is subjected to two forces, W and P . Let the resultant R  meet the base at E at a 

distance “ e ” from O as shown in Figure 1.29.  

  

Figure 1.29 Resultant force in rectangular dam 

Using Varignon’s theorem of moments, (i.e., the sum of moments of all forces about any point is 

equal to the moment of their resultant about the same point), the eccentricity ( e ) is calculated as 

0
3

h
P W e R       

 
3

P h
e

W
   (1.22) 

The dam is in equilibrium under the action of the following forces: 

i) Weight of the dam (W )acting vertically downwards through the centre of gravity 

ii) Horizontal thrust ( P ) due to water pressure acting at 3h from the base 

iii) Reaction offered at the base for the resultant ( R ) in opposite direction. 

The horizontal component of R  at E is resisted by frictional resistance against sliding at the 

base, and the vertical component of R  is resisted by normal reaction at the base. Since this vertical 

component acts at an eccentricity e  from O, the section at the base will be subjected to both direct 

and bending stresses. 

R

e
A BO

P

W

E

2b 2b

W

P

C.G.

heel toe

x



Theory of Structures| 37 

 

Therefore,   
W M

A Z
 

where  

Weight of dam,  W V A H       

Area of section resisting the weight,    1A b d b b      

Moment causing the bending stress, M W e   

Section modulus, 
  22 21

6 6 6

bdb b
Z     

Eccentricity, 
3

P h
e

W
   

Substituting the above expressions in the resultant stresses equation, 

 2

6
1

6

W W e W e

b b bb


  
    

 
 (1.23) 

The maximum stress occurs at B (always compression), and minimum stress occurs at A 

(compression or tension depending on the value of eccentricity). 

max B

6
1

W e

b b
 

 
   

 
  (1.24) 

min A

6
1

W e

b b
 

 
   

 
 (1.25) 

1.11.2 Analysis of Trapezoidal Dam 

Consider a trapezoidal dam that retains water on its vertical side as shown in Figure 1.30. Similar 

to the rectangular dam, the lateral (horizontal) thrust acting at 3h from the base is   

21

2
P h  (1.26) 

The weight of the dam is calculated by considering the average breadth of the section 

2
 

 
     

 

a b
W V d H  (1.27) 

Unlike the rectangular section (in which the centre of gravity 2x b ), for trapezoidal section, 

the centre of gravity (C.G.) is calculated using a formula. If x  is the centre of gravity (at which W  

acts vertically) measured from the face of the vertical wall, then 
2 21

3

a ab b
x

a b

  
  

 
  (1.28) 



38 | Direct and Bending Stresses 

 
where “ a ” is the top side and “ b ” is the bottom side, and the value of x  always lies between 3b  

and 2b  for all the general conditions where a b . 

 

Figure 1.30 Trapezoidal dam 

Let point F be the distance of C.G. from A (i.e., AF= x ), and point O be the mid-point at the 

base (i.e., AO= 2b ). The resultant ( R ) of  weight (i.e., W , acting vertically at point F) and lateral 

thrust (i.e., P , acting horizontally at 3h ) meets the base at E at a distance of e from O as shown 

in Figure 1.31.  

 

Figure 1.31 Resultant force in trapezoidal dam 

R

e
A BO

P

W

E

2b 2b

W

P

C.G.

heel toe

F

x 'x

Sectional elevation

H

A B

CD

P

h

3

h

P

W R

a

h

b
F

Cross-section at base

Y

d
X

2b 2b

O
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Similar to the rectangular section, apply Varignon’s theorem by equating the sum of moments of 

P  and W about point E, with the moment of R  about point E. 

   0
3

h
P W x R
 

     
 

 

3

P h
x

W
    (1.29) 

Let Ex  be the distance between A and E.  

 
E

 x x x   (1.30) 

Since the vertical component of R  acting at E is eccentric to the centroid of base, it causes both 

direct and bending stresses. The eccentricity that causes bending stresses is 

E
2

b
e x   (1.31) 

The maximum and minimum stresses are determined using the same equation used for rectangular 

section. 

1.11.3 Condition to Avoid Tension 

Since the section at the base is rectangle, the value of eccentricity is limited to 6b  for ensuring 

compressive stress at the base without development of any tension (i.e., 6e b ). 

1.11.4 Condition to Prevent Sliding 

The horizontal component of R  (i.e., P ) is resisted by the frictional force between the bottom of 

the dam and the ground beneath, and it should be less than the limiting frictional resistance ( F ) 

for ensuring safety against sliding. Therefore, the frictional resistance is obtained as 

 F W   (1.32) 

where   is the coefficient of friction between the dam and the soil on which it rests. 

The factor of safety is the ratio between the resistance offered by the frictional force and the 

horizontal force which causes sliding, and the value should not be less than 1.0. 

sliding  
F W

FS
P P

 
   (1.33) 

It is usual to design the dam such that the factor of safety against sliding is at least 1.50. 

1.11.5 Condition to Avoid Overturning 

For ensuring safety against overturning, it is necessary that the resultant must strike the base within 

its breadth (i.e., point E should lie within the base AB). That means the overturning of the dam 

occurs if the clockwise moment due to water thrust ( )P  about B exceeds the restoring moment due 

to W  about B. 
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The overturning moment is the product of horizontal thrust and the distance of the force from 

the base. 

3
O

Ph
M   (1.34) 

The restoring moment is the product of the weight and its CG distance from the toe. 

( )RM W b x   (1.35) 

The factor of safety is the ratio between the restoring moment and the overturning moment, and the 

value should not be less than 1.0. 

overturning  R

O

M
FS

M
  (1.36) 

It is usual to design the dam such that the factor of safety against overturning is at least 1.50. 

 

1.11.6 Numerical Examples 

Example 1.15: A trapezoidal masonry dam is as shown in Figure 1.32. Determine the maximum 

and minimum stresses at the base if the unit weight of masonry is 18 kN/m3 and weight of water is 

10 kN/m3. 

 

Figure 1.32 Dimensions of trapezoidal dam (Example 1.15) 

Solution:  

Given data for the analysis are as follows.  

Top breadth of dam, 3.0 ma   

Bottom breadth of dam, 7.5 mb   

Width of dam, 1.0 md  (i.e., unit length) 

Height of dam, 20.0 mH   

Height of water, 15.0 mh   

Density of water,
310.0 kN/m   

Density of masonry,
318.0 kN/m   

20 m

A B

CD

15 m

3 m

7.5 m
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As the dam is trapezoidal, the weight, 
2

a b
W H 

 
   
 

 

3.0 7.5
20 18.0 1890.0 kN

2

 
    
 

 

Lateral thrust due to water pressure, 21

2
P h    

21
10.0 (15.0) 1125.0 kN

2
     

Distance of centre of gravity from A, 

2 21

3

a ab b
x

a b

  
  

 
 

2 21 3.0 (3.0)(7.5) 7.5
2.786 m

3 3.0 7.5

  
  

 
 

Location of R from A, E .
3

P h
x x x x

W
     

1125.0 15
2.786 5.762 m

1890.0 3

 
   

 
 

Therefore, eccentricity, E
2

b
e x   

7.5
5.762 2.012 m

2
    

The maximum and minimum stresses are calculated as 

max B

6
1

W e

b b
 

 
   

 
 

21890.0 6 2.012
1 657.62 kN/m

7.5 7.5

 
   

 
 (compression) 

min A

6
1

W e

b b
 

 
   

 
 

21890.0 6 2.012
1 153.62 kN/m

7.5 7.5

 
    

 
 (tension) 
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Example 1.16: A rectangular masonry dam of 18 m high is used to reserve water up to 15 m. Find 

the minimum base width required if the unit weight of masonry is 22 kN/m3 and weight of water is 

10 kN/m3. Take the coefficient of friction between masonry and ground is 0.6. 

Solution:  

Let the width of base be “ b ”.  

Weight of masonry,  W b d H     

 1.0 18.0 22 396.0  kNb b     

Lateral thrust on the dam, 
21

2
P h  

21
10 (15.0) 1125.0 kN

2
     

Eccentricity,
3

P h
e

W
   

 

 

1125.0 15.0 625.0
 m

396.0 3 44.0 b b


 


 

Minimum width required to avoid tension at base is obtained by satisfying the condition 
min 0  .  

min

6
1 0

W e

b b


 
   

 
 (this is same as 6e b ) 

625.0

44.0 6

b

b
   

9.232 mb   

Minimum width required to avoid sliding is obtained by equating the horizontal thrust with the 

frictional resistance. 

P W   

1125.0 0.6 396.0b   

4.735 mb   

Since the minimum width required at the base to avoid sliding is less than the width required to 

avoid tension, it is safe to provide 9.232 mb  . 

 

Example 1.17: A trapezoidal masonry dam of 18 m high is used to reserve water up to 15 m. Find 

the minimum base width required if the unit weight of masonry is 22 kN/m3, weight of water is 10 

kN/m3, and the maximum normal pressure at the base varies from zero at one side to 550 kN/m2 at 

the other side.  
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Solution:  

Let the top width be a , and bottom width be b . 

Weight of masonry, 
2

a b
W d H 

 
   
 

 

 1.0 18.0 22.0 198.0  kN
2

a b
a b

 
      
 

 

Lateral thrust on the dam, 
21

2
P h  

 
21

10 15.0 1125.0 kN
2

     

Since the stress varies from zero to 550 kN/m2 at the base, no-tension condition is satisfied. 

min

6
1 0

W e

b b


 
   

 
, this leads to 6e b .  

Substituting 6e b  in the maximum stress condition, 

max

6
1 550

W e

b b


 
   

 
  

 6 6
1 550

bW

b b

 
  

 
  

275.0
W

b
  

Substituting the value of W in the above equation,  

198.0( )
275.0

a b

b


   198.0 198.0 275.0a b b    

198.0 77.0a b    0.389a b  

Distance of centre of gravity 

2 21

3

a ab b
x

a b

  
  

 
 

2 21 (0.389 ) 0.389
0.370

3 0.389

b b b b
b

b b

   
  

 
 

Distance of point at which R strikes, Ex x x   

.
3

P h
x

W
   
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1125.0 15
0.370

198.0(0.389 ) 3
b

b b

 
   

  
 

20.453
0.370  b

b
   

Therefore, eccentricity, E
2

b
e x   

20.453
0.370

2

b
b

b
    

20.453
0.130b

b
   

For no-tension condition to be satisfied, 6e b . 

20.453
0.130

6

b
b

b
    

220.453 0.297b   

8.303 mb   

Therefore top width, 3.230 ma  , and bottom width 8.303 mb   are provided. 
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UNIT SUMMARY  

 Basic equations to be satisfied while solving any structural analysis problem are 

Equilibrium conditions, Compatibility conditions and Constitutive relations. 

 Two types of indeterminacies to classify the structures are Static and Kinematic 

indeterminacies 

 Free-body diagram is a diagram that represents the structure graphically by replacing the 

supports with respective reaction components 

 In axially loaded vertical members, the stress developed is the direct stress, 
0

P

b d



  

 In eccentrically loaded vertical members, the stresses developed are the direct and bending 

stresses: 
0  and b

P M

A Z
    

 The resultant stress is obtained by using yx

xx yy

P eP eP

b d Z Z



  


  

 Neutral axis is the layer within the section under bending where the stress is zero. 

 In a rectangular section, the limiting value of eccentricity to avoid tension is 6b  or 6d . 

 The wind force acting on chimneys is calculated as 
eP k p A    

 The conditions to be satisfied for the dams are safety against tension, sliding and 

overturning  

 Horizontal thrust on the dam due to water is calculated as 
21

2
P h   
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EXERCISES  

1.1. Distinguish between axial and eccentric loads. 

1.2. Define bending stress. 

1.3. Explain the different possibilities of resultant stresses. 

1.4. What is meant by core or Kernel? Write the importance of it.  

1.5. Write the stability conditions of masonry dam. 

1.6. A circular column of 300 mm diameter carries an eccentric compressive load of 50 kN at 

an eccentricity of 50 mm. Find the maximum and minimum stresses at the base. 

1.7. A rectangular hollow column with outer dimensions of 300×450 mm and wall thickness 

of 50 mm is subjected to compressive load of 100 kN acting at one of the exterior corners. 

Find the maximum and minimum stresses at the base, and draw the stress distribution 

across all four edges. 

1.8. A hollow circular column with outer diameter of 200 mm and inner diameter of 150 mm 

is subjected to an eccentric compressive load of 75 kN. Find the limiting value of 

eccentricity to avoid tension at the base. 

1.9. A cylindrical chimney with external diameter of 5 m and internal diameter of 2 m is 

subjected to a wind pressure of 1.2 kN/m2. If the height of the chimney is 25 m, weight 

density of the chimney is 22 kN/m3 and coefficient of wind pressure is 0.6, find the 

maximum and minimum stresses at the base. 

1.10. A masonry dam 9 m high, 1.25 m wide at the top and 5.75 m wide at the base retains water 

to a depth of 8.4 m, the water face of the dam being vertical. Find the maximum and 

minimum stress intensities at the base. Water and masonry weigh 10 kN/m3 and 22 kN/m3 

respectively.  

1.11. A masonry dam of rectangular section 4 m high retains water. Find the width of the dam 

section so that tensile stresses are just avoided. For this condition, find the maximum stress 

in masonry for the base section. Water and masonry weigh 10 kN/m3 and 22 kN/m3 

respectively. 

1.12. A trapezoidal masonry dam 9 m high retains water up to the top. The water face of the dam 

is vertical. If the top width of the dam is 1.5 m, find the minimum bottom width required 

to avoid tension in masonry. Take weight densities of water and masonry as 10 kN/m3 and 

22 kN/m3 respectively. 

1.13. A masonry dam of trapezoidal section has a vertical water face and a height of 9 m. The 

depth of water impounded is 8.4 m. If the top width of the section is 1.5 m, find the 

minimum base width required for the condition of no-tension in masonry and also the 

condition of no-slip for 0.6  . Take weight densities of water and masonry as 10 kN/m3 

and 22 kN/m3 respectively. 
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QR Code for Direct and Bending Stresses 

 

NPTEL Lecture: https://www.youtube.com/watch?v=iNG4bLMyeFA 
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UNIT SPECIFICS  

This unit discusses the following aspects. 

 Concept of slope and deflection 

 Relationship among forces and displacements 

 Double integration and Macaulay’s methods for displacement responses 

RATIONALE  

Force responses obtained from the analysis are primarily utilized to decide the dimensioning of 

section during the design process. Displacement responses are employed to validate the design in 

the form of serviceability requirement. In statically indeterminate structures, the displacement 

responses serve as additional equations to analyse the structures for even force responses. This 

chapter presents basic analytical approach of solving statically determinate structures for 

displacement responses such as slope and deflection. 

UNIT OUTCOMES 

List of outcomes of this unit is as follows. 

U2-O1: Describe the concept of displacement responses 

U2-O2:  Describe the concepts of stiffness and its importance 

U2-O3:  Describe the relationship among forces and displacements  

U2-O4: Application of double integration method to determine slope and deflection  

U2-O5:  Application of Macaulay’s method to determine slope and deflection  

Mapping of Unit-2 Outcomes with Course Outcomes * 

 CO-1 CO-2 CO-3 CO-4 CO-5 

U2-O1 1 3 2 2 1 

U2-O2 1 3 2 2 1 

U2-O3 1 3 2 2 1 

U2-O4 1 3 1 1 1 

U2-O5 1 3 1 1 1 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation)  

Slope and Deflection 2 
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2.1 Introduction 

As already discussed, the force responses (e.g., maximum shear force and maximum bending 

moment) are the primary input to the structural design process for dimensioning the sections. 

However, displacement responses (e.g., maximum deflection) sometimes decide the proportioning 

of sections for ensuring the serviceability requirements. In case of statically indeterminate 

structures, when the available equilibrium equations are inadequate to solve for the unknown 

reactions present in the free-body diagram, the solution process demands the displacement 

responses for invoking the compatibility conditions in order to get the solution. Therefore, it is 

essential to develop the ability to estimate displacements in statically determinate (just-rigid) 

structures.  

2.2 Stiffness 

Stiffness is defined as the force required to cause displacement, which is inherent with the material, 

and the inverse of stiffness is called flexibility. For example, in a bar element, if an axial load ( P ) 

results in a deformation ( ) then the stiffness of the bar is P  , which is further written as AE L

after substituting PL AE  for  , where AE  is termed as axial rigidity. Similarly, when the 

bending causes the deformation in elements or structures, the bending stiffness can be defined. 

2.3 Flexural Deformation 

When loads applied on a structure induce bending, the structure assumes a configuration that 

satisfies external equilibrium under the combined action of the loads and reactions. Simultaneously, 

internal forces are developed in the form of shear and moments throughout the structure. At any 

point within the structure, there is a curvature consistent with the moment. These curvatures 

accumulate as angle changes along the lengths, causing the member to deform into a bent 

configuration.  The elements of the deformed structure fit together in a compatible mode by 

satisfying all the displacement boundary conditions. 

2.4 Sign Conventions 

Consider a beam subjected to arbitrary lateral loads as shown in Figure 2.1(i). An element length 

dx  of the beam at a distance x  from the left support is acted upon by an external lateral load, and 

internal shearing forces and bending moments. The bending moments on the elemental length dx  

tend to convert the straight beam concave on its upper surface and convex on its lower surface (i.e., 

compression in the upper fibers and tension in the lower fibers). This phenomenon is called sagging, 

and the corresponding moments are called sagging bending moments. The shearing forces on the 

elemental length tend to rotate the element in a clockwise sense.  

The clockwise shearing forces (Figure 2.1(ii)) and sagging bending moments (Figure 2.1(iii)) 

are considered positive. When the variations of shearing force and bending moment are represented 

graphically along the beam (i.e., shear force and bending moment diagrams respectively), the 

quantities are plotted above the centre line of the beam when positive, and below when negative. 
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Figure 2.1 Forces and their sign conventions  

2.5 Flexural Force-Displacement Relationship 

The straight beam takes curved profile due to the bending nature of loading which is termed as 

flexural behaviour. The measurement of any point on the bent configuration from the original 

position is called displacement. The measurement of displacement in linear direction is called 

deflection while in rotational direction is slope. Typically, for a flexural member, the force-

displacement relationships must relate the end moments to the corresponding end rotations of the 

member. Actually, shears and transverse deflections at the end need to be considered, but they are 

neglected in the current formulation.  

Consider a flexural member as shown in Figure 2.2. Let AB be an isolated element subjected 

to sagging moment M as shown in Figure 2.2. As the element bends, the bottom fibres are 

elongated while the top fibres are contracted. In between, there is a longitudinal fibre, called neural 

fibre, whose length remains unchanged.  The plane cross sections are assumed to remain plane even 

after bending when the beam deflects.  

The extensions of lines through cross sections at A and B intersect at O, called centre of 

curvature, by forming an angle d . If the tangents to the deflected neutral fibre are constructed at 

points A and B, it is evident that d  also measures the angular deformation over the length of the 

beam element. The line BD constructed parallel to the deflected cross section at A creating triangle 

BCD. Then, for small angles, comparing triangles BCD and OAB,  

dx dl
d

R y
  (2.1) 

where R  is the radius of curvature of the element, y  is the distance from the neutral fibre to the 

topmost fibre, and dl  is the shortening of the top fibre.  

 

(ii) Clockwise 

shearing forces 

(iii) Sagging 

bending moment 

(i) Forces in an element 
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Figure 2.2 Flexural deformation of beam element  

Eq. (2.1) can be written as 

dl y

dx R
  (2.2) 

As the topmost fibre is essentially an axially loaded element, the application of respective 

expressions for axial strain and subsequently axial stress in Eq. (2.1), 

y
E

R
   (2.3) 

where   is the stress in the top fibre and E  is the modulus of elasticity.  This fibre stress could 

also be expressed by the familiar expression from basic mechanics that 

M y

I



  (2.4) 

where M  is the moment acting on the element, and I  is the moment of inertia. From Eq. (2.3) and 

Eq. (2.4),  

1 M

R EI
  (2.5) 

The transverse displacement   of the deflected structure can be related to the radius of the 

curvature according to the elementary calculus relationship as 

x dx Deflected 

position 

X 

Y Original 

position 

A B 

dx 

A 

M 

O 

B 

d 

d 
M 

d 
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2

2

3 2
2

1

1

d

dx

R d

dx





 
  

   
   

 (2.6) 

where   (pronounced as Kappa) is defined as curvature. Here, ( )x  is the deflection at a distance 

x  from the origin, and the gradient 
d

dx


 is the slope. Since the value of d dx  is small compared 

to unity, Eq. (2.6) reduces to  
2

2

1 d

R dx



    (2.7) 

Therefore, from Eq. (2.5) and Eq. (2.7) 
2

2

d M

dx EI


   (2.8) 

Eq. (2.8) is a force- deformation relationship. If the slope is represented as d dx    then 

d d d M

dx dx dx EI

 
   

 
 (2.9) 

Solution of Eq. (2.9) results in the quantities of slope and deflection as  

1 
d M

dx C
dx EI



    (2.10) 

2 dx C    (2.11) 

where EI  is called flexural rigidity, 
1C  and 

2C  are the constants of integration. 

Table 2.1 presents the relationship among the responses. From the curvature (which is generally 

obtained as the bending moment divided by the flexural rigidity), first integration yields respective 

slope quantities, and further integration of the slopes yields the deflections. This can also be 

visualized in differential form starting from the deflection. 

Table 2.1 Relationship among the responses 

 

 

Deflection,   

 

Slope, 
d

dx



  

Moment, 
2

2

d
M EI

dx


  

Shear, 
3

3

dM d
V EI

dx dx


   

Load, 
4

4

dV d
w EI

dx dx


   
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Different methods to estimate the slope and deflection quantities are as follows. 

(i) Direct integration methods 

(ii) Graphical methods 

(iii) Energy methods 

Direct integration methods (Double integration method and Macaulay’s method) use the force-

deformation relationship as a differential equation. Solution of this differential equation by 

applying appropriate boundary conditions yields the explicit expressions for slope ( d dx ), and 

deflection ( ). The primary advantage of the integration methods is the ability to get the 

displacement quantities at any point along the length using the obtained explicit expressions. The 

integration method is of greatest value when the loading is such as to produce a moment diagram 

that is a continuous function over the entire length of the beam (e.g., cantilever beam subjected to 

a point load at the free end; cantilever beam or a simply supported beam subjected to a uniformly 

distributed load over the entire span). However, when the moment diagram has discontinuities (i.e., 

due to concentrated loads or internal reaction points occurring along the span), additional constants 

of integration should be evaluated by applying continuity conditions. In those situations, graphical 

methods (Moment-area method and Conjugate beam method) are considered to be superior for 

general loading cases. 

2.6 Double Integration Method 

The governing differential equation of the elastic curve presented in Eq. (2.8) is written as  
2

2 x

d
EI M

dx


   (2.12) 

Eq. (2.12) can be directly integrated to obtain the solutions as  

1x

d
EI M dx C

dx


    (2.13) 

1 2 1 2x xEI M dx C dx C M dx dx C x C          
        (2.14) 

where 
1C  and 

2C  are the constants of integration. These constants can be determined using 

boundary conditions, which are specific values of slope and deflection known at particular locations 

along the span. Table 2.2 presents the boundary conditions for common types of supports. 

Table 2.2 Boundary conditions 

Support Slope Deflection 

Fixed support 0   0   

Hinged support 0   0   

Roller support 0   0   

Intermediate 

support 
0   0   

Free end 0   0   
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For example, at the location of the fixed support in a beam, both 0   and 0   can be 

considered as two boundary conditions to solve for two constants of integration. In case of hinged 

or roller supports, the non-zero boundary condition cannot be applied, hence 0   can only be 

applied. However, while solving simply-supported beam examples,  0   at two support locations 

offer two boundary conditions required for solving two constants of integration. After replacing the 

values of the constants, Eq. (2.13) and Eq. (2.14) render the explicit expressions for determining 

the values of slope and deflection respectively at any location along the span.   

It is important to decide the sign (positive or negative) on the right side of Eq. (2.12). Consider 

a beam subjected to sagging moments as shown in Figure 2.3. The value of rotation ( )d dx  

diminishes along the length as x  increases. This means, a sagging moment results in negative 

curvature. Therefore, the governing differential equation is written as 

2

2

d
EI M

dx


   (2.15) 

where M  is the sagging bending moment. 

 

Figure 2.3 Sagging bending moment 

  

2.6.1 Numerical Examples 

Example 2.1: A cantilever beam of span L  is subjected to a concentrated load W at the free-end. 

Using the double integration method, determine the slope and the deflection at the free-end. Also 

find the slope and deflection at the mid-span. 

Solution:  

 

Figure 2.4 Cantilever beam with a concentrated load at free-end (Example 2.1) 

Y 

X 

M M 

A 

B 

W 

X 

X 

L 
x 

B 

B 
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The cantilever beam with loading and the deflected shape are shown in Figure 2.4. Slope at B (i.e., 

Bθ ) is the angular deviation of point B with respect to the horizontal axis, and deflection at B (i.e., 

B )  is the displacement of point in lateral direction as shown in Figure 2.4. The governing 

differential equation of the elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

Take moment of all forces to the right of section XX by keeping the free end B as origin, 
M W x    

Since the bending of the beam due to the load is hogging in nature, it is considered negative, and 

this moment variation is a single continuous function for the entire span (i.e., for 0 x L  ). 

Substituting the moment expression in the governing equation, 

 
2

2

d
EI Wx Wx

dx


     

As already discussed, the above equation is a second-order differential equation, and the first 

integration yields the expression for slope and the second integration yields the expression for 

deflection as  
2

1
2

d x
EI W C

dx


    (2.16) 

3

1 2 
6

x
EI W C x C       (2.17) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions (BC) as follows. 

BC (i): At the fixed end, the value of slope is zero, x L    0
d

dx


  

BC (ii): At the fixed end, the value of deflection is zero, x L    0   

Substituting the first boundary condition in Eq. (2.16), 

 
2

1

( )
0

2

L
EI W C     

2

1
2

WL
C


  

Substitute the value of 
1C  in Eq. (2.16), 

2 2 2
2

2 2 2 2

d x WL W WL
EI W x

dx


      

2
21

2 2

d W WL
x

dx EI

 
  

 
 (2.18) 

Eq. (2.18) is the expression for determining the slope at any point between 0x   and x L . 

Similarly, substituting the second boundary condition in Eq. (2.17), 

 
3

1 20
6

L
EI W C L C      

The value of 
1C  is already obtained. Therefore, by substituting 

1C , 
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3 2

20
6 2

WL WL
L C      

3

2
3

WL
C   

Now, substitute the values of 
1C  and 

2C  in Eq. (2.17), 
2 3

3 
6 2 3

W WL WL
EI x x     

2 3
31

 
6 2 3

W WL WL
x x

EI

 
    

 
 (2.19) 

Eq. (2.19) is the expression for determining the deflection at any point between 0x  and x L . 

(i) For determining the value of slope at the free-end (i.e., at B), substitute 0x   in Eq. (2.18). 
2 2

21
(0)

2 2 2

d W WL WL

dx EI EI

  
    

 
 

2

Bθ
2

WL

EI


  

(ii) For determining the value of deflection at the free-end (i.e., at B), substitute 0x   in Eq. 

(2.19). 
2 3 3

31
 (0) (0)

6 2 3 3

W WL WL WL

EI EI

 
       

 
 

3

B 
3

WL

EI
   

(iii) Similarly, for determining the value of slope at the mid-span (i.e., at C), substitute 2x L  

in Eq. (2.18). 

 
2 2

21 3
2

2 2 8

d W WL WL
L

dx EI EI

  
    

 
 

2

C

3
θ

8

WL

EI


  

(iv) Similarly, for determining the value of deflection at the mid-span (i.e., at C), substitute 

2x L  in Eq. (2.19). 

   
2 3 3

31 5
 2 2

6 2 3 48

W WL WL WL
L L

EI EI

 
       

 
 

3

C

5
 

48

WL

EI
   

The values of slope and deflection are indicated in Figure 2.5.  
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Figure 2.5 Representation of slopes and deflections (Example 2.1) 

In general, in cantilever beams under normal loading conditions, both the maximum slope and 

deflection occur at the free end only. Therefore,  

2

max B
2

WL

EI
       

3

max B
3

WL

EI
      

 

Example 2.2: A cantilever beam of span L  is subjected to a uniformly distributed load over the 

entire length. Using the double integration method, determine the slope and deflection at the free-

end. Also determine the slope and deflection at the mid-span. 

Solution:  

 

Figure 2.6 Cantilever beam with uniformly distributed load (Example 2.2) 

The loading and the deflected shape are shown in Figure 2.6. The governing differential equation 

of the elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

Take moment of all forces to the right of section XX by keeping the free end B as origin, 

2

2 2

x w
M w x x       

A B C 
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The bending moment is considered negative due to hogging nature, and the variation of moment is 

a single continuous function for the entire span (i.e., for 0 x L  ). Substituting the moment 

expression in the governing equation, 
2

2 2

2 2 2

d w w
EI x x

dx

  
    

 
 

The first and second integrations yield the expressions for slope and deflection respectively as  
3

1
2 3

d w x
EI C

dx


    (2.20) 

4

1 2 
2 12

w x
EI C x C       (2.21) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, x L    0
d

dx


  

BC (ii): At the fixed end, the value of deflection is zero, x L    0   

Substituting the first boundary condition in Eq. (2.20) 

  3

10 ( )
6

w
EI L C      

3

1
6

wL
C


  

Substitute the value of 
1C  in Eq. (2.20) 

3
3

6 6

d w wL
EI x

dx


   

3
31

6 6

d w wL
x

dx EI

 
  

 
 (2.22) 

Eq. (2.22) is the complete expression for determining the slope at any point between 0x  and 

x L . 

Similarly, substituting the second boundary condition in Eq. (2.21), 

  4

1 20 ( ) ( )
24

w
EI L C L C      

The value of 
1C  is already obtained. Therefore, substituting 

1C , 
4 3

20
24 6

wL wL
L C      

4

2
8

wL
C   

Now, substitute the values of 
1C  and 

2C  in Eq. (2.21) 
3 4

4 
24 6 8

w wL wL
EI x x     

3 4
41

 
24 6 8

w wL wL
x x

EI

 
    

 
 (2.23) 
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Eq. (2.23) is the expression for determining the deflection at any point between 0x  and x L . 

(i) For determining the value of slope at the free-end (i.e., at B), substitute 0x   in Eq. (2.22). 
3 3

31
(0)

6 6 6

d w wL wL

dx EI EI

  
    

 
 

3

Bθ
6

wL

EI


  

(ii) For determining the value of deflection at the free-end (i.e., at B), substitute 0x   in Eq. 

(2.23). 
3 4 4

41
 (0) (0)

24 6 8 8

w wL wL wL

EI EI

 
       

 
 

4

B 
8

wL

EI
   

(iii) Similarly, for determining the value of slope at the mid-span (i.e., at C), substitute 2x L  

in Eq. (2.22). 
3 3

31 7
( 2)

6 6 48

d w wL wL
L

dx EI EI

  
    

 
 

3

C

7
θ

48

wL

EI


  

(iv) Similarly, for determining the value of deflection at the mid-span (i.e., at C), substitute 

2x L  in Eq. (2.23). 

   
3 4 4

41 17
 2 2

24 6 8 384

w wL wL wL
L L

EI EI

 
       

 
 

4

C

17
 

384

wL

EI
   

For this loading case also, both the maximum slope and deflection occur at the free end only. 

Therefore,  

3

max B
6

wL

EI
       

and  
4

max B
8

wL

EI
      
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Example 2.3: A cantilever beam of span L  is subjected to a uniformly varying load of w at the 

fixed end and zero at the free end. Using the double integration method, determine the slope and 

deflection at the free-end.  

Solution:  

The uniformly varying load considered is a triangle load with the intensity varying from w  (per 

unit length) at the fixed end A and zero at the free end B as shown in Figure 2.7. 

 

Figure 2.7 Cantilever beam with uniformly varying load (Example 2.3) 

The governing differential equation of the elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

Take moment of all forces to the right of section XX by keeping the free end B as origin, 

31 1

2 3 6

wx w
M x x x

L L

  
        

  
 

The bending moment is considered negative due to hogging nature, and the variation of moment is 

a single continuous function for the entire span (i.e., for 0 x L  ). Substituting the moment 

expression in the governing equation, 
2

3 3

2 6 6

d w w
EI x x

dx L L

  
    

 
 

The first and second integrations yield the expressions for slope and deflection respectively as
4

1
6 4

d w x
EI C

dx L


    (2.24) 

5

1 2 
6 20

w x
EI C x C

L
       (2.25) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, x L    0
d

dx


  

BC (ii): At the fixed end, the value of deflection is zero, x L    0   

Substituting the first boundary condition in Eq. (2.24) 

  4

10 ( )
24

w
EI L C

L
     

3

1
24

wL
C


  

A 
B 

w 

X 

X 

L 
x 
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Substitute the value of 
1C  in Eq. (2.24) 

3
4

24 24

d w wL
EI x

dx L

 
  
 

 

3
41

24 24

d w wL
x

dx EI L

 
  

 
 (2.26) 

Eq. (2.26) is the expression for determining the slope at any point between 0x  and x L . 

Similarly, substituting the second boundary condition and the value of 
1C  in Eq. (2.25), 

 
3

5

20 ( ) ( )
120 24

w wL
EI L L C

L

 
     

 
  

4

2
30

wL
C   

Now, substitute the values of 
1C  and 

2C  in Eq. (2.25) 

3 4
5 

120 24 30

w wL wL
EI x x

L

 
    

 
 

3 4
51

 
120 24 30

w wL wL
x x

EI L

 
    

 
 (2.27) 

Eq. (2.27) is the expression for determining the deflection at any point between 0x  and x L . 

(i) The value of slope at the free-end (i.e., at B) can be obtained by substituting 0x   in Eq. 

(2.26). 
3 3

41
(0)

24 24 24

d w wL wL

dx EI L EI

  
    

 
 

3

Bθ
24

wL

EI


  

(ii) The value of deflection at the free-end (i.e., at B) can be obtained by substituting 0x   in 

Eq. (2.27). 
3 4 4

51
 (0) (0)

120 24 30 30

w wL wL wL

EI L EI

 
       

 
 

4

B 
30

wL

EI
   

For this loading case also, both the maximum slope and deflection occur at the free end only. 

Therefore,  

3

max B
24

wL

EI
      and 

4

max B
30

wL

EI
      
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Example 2.4: A cantilever beam of span L  is subjected to a clockwise moment 
1M  at the free end. 

Using the double integration method, determine the slope and deflection at the free-end.  

Solution:  

The applied load is the concentrated moment at the free end as shown in Figure 2.8. The governing 

differential equation of the elastic curve as given in Eq. (2.15) is  

2

2

d
EI M

dx


   

 

Figure 2.8 Cantilever beam with a moment at the free end (Example 2.4) 

Take moment of all forces to the right of section XX by keeping the free end B as origin, 

1M M   

The bending moment is considered negative due to hogging nature, and the variation of moment is 

a single continuous function for the entire span (i.e., for 0 x L  ). Substituting the moment 

expression in the governing equation, 

 
2

1 12

d
EI M M

dx


     

The first and second integrations yield the expressions for slope and deflection respectively as 

1 1

d
EI M x C

dx


    (2.28) 

2

1 1 2 
2

x
EI M C x C       (2.29) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, x L    0
d

dx


  

BC (ii): At the fixed end, the value of deflection is zero, x L    0   

Substituting the first boundary condition in Eq. (2.28) 

  1 10 ( )EI M L C     
1 1C M L   

Substitute the value of 
1C  in Eq. (2.28) 

 1 1

d
EI M x M L

dx


    

A B 

M1 

X 

X 

L 
x 
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 1 1

1d
M x M L

dx EI


   (2.30) 

Eq. (2.30) is the expression for determining the slope at any point between 0x  and x L . 

Similarly, substituting the second boundary condition and the value of 
1C  in Eq. (2.29), 

 
2

1 1 2

( )
0 ( )

2

L
EI M M L L C       

  
2

1
2

2

M L
C   

Now, substitute the values of 
1C  and 

2C  in Eq. (2.29) 

2
21 1

1 
2 2

M M L
EI x M Lx

 
    

 
 

2
21 1

1

1
 

2 2

M M L
x M Lx

EI

 
    

 
 (2.31) 

Eq. (2.31) is the expression for determining the deflection at any point between 0x  and x L . 

(i) The value of slope at the free-end (i.e., at B) can be obtained by substituting 0x   in Eq. 

(2.30). 

  1
1 1

1
(0)

M Ld
M M L

dx EI EI


     

1
Bθ

M L

EI


  

(ii) The value of deflection at the free-end (i.e., at B) can be obtained by substituting 0x   in 

Eq. (2.27). 
2 2

21 1 1
1

1
 (0) (0)

2 2 2

M M L M L
M L

EI EI

 
       

 
 

2

1
B 

2

M L

EI
   

For this loading case also, both the maximum slope and deflection occur at the free end only. 

Therefore,  

1
max B

M L

EI
       

and 
2

1
max B

2

M L

EI
      
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Example 2.5: A cantilever steel beam of span 6 m is subjected a uniformly distributed load of 20 

kN/m over the entire length, a point load of 50 kN at the free end, and an anti-clockwise moment 

of 75 kNm at the free end. The cross-section of the beam is 200×300 mm, and the modulus of 

elasticity is 6210 10 2kN/m . Determine the slope and deflection at the free-end.  

Solution:  

 

Figure 2.9 Cantilever beam with multiple loads (Example 2.5) 

The loading on the beam is as shown in Figure 2.9. The governing differential equation of the 

elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

Take moment of all forces to the right of section XX by keeping the free end B as origin, 

 250 20 75 50 10 75
2

x
M x x x x            

in which ( 50 )x  is the hogging moment due to the point load, 2( 10 )x  is the hogging moment due 

to the uniformly distributed load over a span of “ x ”, and (75)  is the sagging moment. The variation 

of moment is a single continuous function for the entire span (i.e., for 0 6x  ). Substituting the 

moment expression in the governing equation, 

   
2

2 2

2
50 10 75 50 10 75

d
EI x x x x

dx


         

The first and second integrations yield the expressions for slope and deflection respectively as   
2 3

150 10 75
2 3

d x x
EI x C

dx


        (2.32) 

3 4 2

1 2 50 10 75
6 12 2

x x x
EI C x C            (2.33) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, 6x     0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 6x     0   

Substituting the first boundary condition in Eq. (2.32), 

 
2 3

1

(6) (6)
0 50 10 75 (6)

2 3
EI C          

1 1170C    

A 

B 

20 kN/m 

6 m 
x 

50 kN 

75 kNm 
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Similarly, substituting the second boundary condition and the value of 
1C  in Eq. (2.33), 

 
3 4 2

2

(6) (6) (6)
0 50 10 75 1170 (6)

6 12 2
EI C            

2 5490C   

Therefore, the expressions respectively for finding the slope and deflections at any point between 

0x  and 6 are, 

3 21 10
25 75 1170

3

d
x x x

dx EI

  
    

 
 (2.34) 

4 3 21 5 25 75
 1170 5490

6 3 2
x x x x

EI

 
      

 
 (2.35) 

Using Eq. (2.34), the slope at the free end: 

 
3 2

B

0

1 10 1170
(0) 25 (0) 75 (0) 1170

3x

d

dx EI EI




  
         

 
  

Substituting the values of 6210 10E  
2kN/m  and 

3 3
6(0.2)(0.3)

450 10
12 12

bd
I     4m , 

  
B 6 6

1170
0.01238

210 10 450 10





  

 
 radians 

Similarly, using Eq. (2.35), the deflection at the free end is, 

4 3 2

B 0

1 5 25 75 5490
(0) (0) (0) 1170 (0) 5490

6 3 2x EI EI

 
             

 
 

Substituting the values of E and I , 

  
B 6 6

5490
0.05810

210 10 450 10
  

 
 m 

The above answers can be directly obtained using the standard formulas that are already 

derived in Examples 2.1, 2.2 and 2.4. The directions of the point load and uniformly 

distributed loads in this example are same as in Examples 2.1 and 2.2. However, the 

direction of the applied moment is opposite to the one in Example 2.4. Therefore, the signs 

for the respective slope and deflection formulas should be changed accordingly. 
2 3

1
B

2 6

M LWL wL

EI EI EI
      

2 3

B

(50)(6) (20)(6) (75)(6) 1170

2 6EI EI EI EI



      radians 

23 4

1
B

3 8 2

M LWL wL

EI EI EI
      

3 4 2

B

(50)(6) (20)(6) (75)(6) 5490

3 8 2EI EI EI EI
      m 
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Note:  

(i) The maximum slope and the maximum defection normally occur at the free end of 

cantilever for the general loading cases. Therefore, no separate calculation is required for 

obtaining the maximum quantities. 

(ii) Instead of the free end of cantilever, the fixed end can also be taken as origin for taking the 

moment of all forces to the left of section XX by properly including the effects of support 

reactions (i.e, vertical reaction and moment reaction). 

 

Example 2.6: A simply supported beam of span L  and flexural rigidity EI  is subjected to a 

uniformly distributed load over the entire length. Using the double integration method, determine 

the slope at the support locations and deflection at the mid-span location. 

Solution:  

 

Figure 2.10 Simply supported beam with uniformly distributed load (Example 2.6) 

The loading on the beam and the deflected shape are shown in Figure 2.10. The governing 

differential equation of the elastic curve as given in Eq. (2.15):  
2

2

d
EI M

dx


   

Since the loading on the simply supported beam is symmetrical, both the vertical reactions at A 

and B will be equal to 
2

wL
. 

A B
2

wL
V V   

Take moment of all forces to the right of section XX by keeping the support B as origin, 

2

B
2 2 2

x wL w
M V x w x x x        

The bending moment is considered positive due to sagging nature, and the variation of moment is 

a single continuous function for the entire span (i.e., for 0 x L  ). Substituting the moment 

expression in the governing equation, 

A B C 

w 

B A 

C 

X 

X 

x 
L 
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2 2

2

2 2 2 2 2

d wL x wL w
EI x w x x

dx

 
      

 
 

The first and second integrations yield the expressions for slope and deflection respectively as   
2 3

1
2 2 2 3

d wL x w x
EI C

dx


       (2.36) 

3 4

1 2 
2 6 2 12

wL x w x
EI C x C          (2.37) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At support B, the value of deflection is zero, 0x    0   

BC (ii): At support A, the value of deflection is zero, x L   0   

Unlike in cantilever beams, both the boundary conditions are related to deflection values, hence 

Eq. (2.37) only should be used. 

Applying the first boundary condition in Eq. (2.37) 

  3 4

1 20 (0) (0) (0)
12 24

wL w
EI C C          

2 0C   

Applying the second boundary condition and the value of 
2C  in Eq. (2.37) 

  3 4

10 ( ) ( ) ( ) (0)
12 24

wL w
EI L L C L          

3

1
24

wL
C   

Therefore, the expressions respectively for finding the slope and deflections at any point between 

0x  and L  are obtained by replacing the values of the constants as, 

3
3 21

6 4 24

d w wL wL
x x

dx EI

 
   

 
 (2.38) 

3
4 31

 
24 12 24

w wL wL
x x x

EI

 
    

 
 (2.39) 

(i) For obtaining the value of slope at B, substitute 0x   in Eq. (2.38). 
3 3

3 21
(0) (0)

6 4 24 24

d w wL wL wL

dx EI EI

 
      

 
 

3

Bθ
24

wL

EI
  

(ii) For obtaining the value of slope at A, substitute x L  in Eq. (2.38). 
3 3

3 21
( ) ( )

6 4 24 24

d w wL wL wL
L L

dx EI EI

  
      

 
 

3

Aθ
24

wL

EI


  
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(iii) For obtaining the value of deflection at C (i.e., mid-span), substitute 2x L  in Eq. (2.39). 

     
3 4

4 31 5
2 2 2

24 12 24 384

w wL wL wL
L L L

EI EI

 
        

 
 

4

C

5
 

384

wL

EI
   

The maximum slope, 
3

max A B
24

wL

EI
        

The maximum deflection, 
4

max C

5

384

wL

EI
      

 

Note:  

In general, in simply supported beams subjected to symmetrical loads, the maximum slope occurs 

at the supports (both supports will have same magnitude, but opposite sign), and the maximum 

deflection occurs at the mid-span.  For unsymmetrically loaded beams, the maximum slope occurs 

at one of the supports and the maximum deflection occurs in between the supports where the 

direction of the slope changes (i.e., slope is zero). 

 

Example 2.7 A simply supported beam of span L  and flexural rigidity EI  is subjected to a 

uniformly varying load over the entire length. Using the double integration method, determine the 

slope at the support locations and deflection at the mid-span location. 

Solution:  

 

Figure 2.11 Simply supported beam with uniformly varying load (Example 2.7) 

The loading on the beam and the deflected shape are shown in Figure 2.11. The governing 

differential equation of the elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

A 
B max 

w 

B A 
x 

L 
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Since the loading on the simply supported beam is unsymmetrical, by applying vertical force 

equilibrium and moment equilibrium conditions, the vertical reactions at A and B are obtained. 

A
3

wL
V   and B

6

wL
V   

Take moment of all forces to the right of section XX by keeping the support B as origin, 

3

B

1 1

2 3 6 6

wx wL w
M V x x x x x

L L

  
         

  
 

The variation of moment is a single continuous function for the entire span (i.e., for 0 x L  ). 

Substituting the moment expression in the governing equation, 
2

3 3

2 6 6 6 6

d wL w w wL
EI x x x x

dx L L

  
     

 
 

The first and second integrations yield the expressions for slope and deflection respectively as   
4 2

1
6 4 6 2

d w x wL x
EI C

dx L


      (2.40) 

5 3

1 2 
6 20 6 6

w x wL x
EI C x C

L
         (2.41) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At support B, the value of deflection is zero, 0x    0   

BC (ii): At support A, the value of deflection is zero, x L   0   

Applying the first boundary condition in Eq. (2.37) 

 
5 3

1 2

(0) (0)
0 (0)

6 20 6 6

w wL
EI C C

L
         

 
2 0C   

Applying the second boundary condition and the value of 
2C  in Eq. (2.37) 

 
5 3

1

( ) ( )
0 ( ) (0)

6 20 6 6

w L wL L
EI C L

L
         

 
3

1

7

360

wL
C   

Therefore, the expressions respectively for finding the slope and deflections at any point between 

0x  and L  are obtained by replacing the values of the constants as, 

3
4 21 7

24 12 360

d w wL wL
x x

dx EI L

 
   

 
 (2.42) 

3
5 31 7

 
120 36 360

w wL wL
x x x

EI L

 
    

 
 (2.43) 
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(i) For obtaining the value of slope at B, substitute 0x   in Eq. (2.42). 
3 3

4 21 7 7
(0) (0)

24 12 360 360

d w wL wL wL

dx EI L EI

 
      

 
 

3

B

7
θ

360

wL

EI
  

(ii) For obtaining the value of slope at A, substitute x L  in Eq. (2.42). 
3 3

4 21 7
( ) ( )

24 12 360 45

d w wL wL wL
L L

dx EI L EI

  
      

 
 

3

Aθ
45

wL

EI


  

(iii) For obtaining the value of deflection at the mid-span, substitute 2x L  in Eq. (2.43). 

     
3 4

5 3

mid-span

1 7 5
2 2 2

120 36 360 768

w wL wL wL
L L L

EI L EI

 
        

 
 

4

mid-span

5

768

wL

EI
 

4

0.00651
wL

EI
  

Since the loading on the beam is not symmetrical, the maximum deflection does not occur at the 

mid-span. The location of the maximum deflection can be obtained by equating the slope equation 

to zero. 
3

4 21 7
0

24 12 360

d w wL wL
x x

dx EI L

 
    

 
 

4 2 2 415 30 7 0x L x L    

The solution of the above polynomial equation results in the following roots. 

 1.315 , 0.519 , 0.519 , 1.315x L L L L      

in which 0.519L  is only the admissible root. Therefore, the maximum deflection occurs at 

0.519x L  from the support B. 

The maximum deflection is  

     
3

5 3

max 0.519

1 7
0.519 0.519 0.519

120 36 360x L

w wL wL
L L L

EI L

 
         

 
  

4

0.006522
wL

EI
  
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Example 2.8: A simply supported beam of span L  and flexural rigidity EI  is subjected to an anti-

clockwise moment 
1M  at support B. Using the double integration method, determine the slope at 

the support locations and deflection at the mid-span location. 

Solution:  

 

Figure 2.12 Simply supported beam with a moment at one support (Example 2.8) 

The loading on the beam and the deflected shape are shown in Figure 2.12. The governing 

differential equation of the elastic curve as given in Eq. (2.15) is  
2

2

d
EI M

dx


   

The beam is not subjected to any lateral loading. However, the concentrated moment (anti-

clockwise) applied at B causes bending of the beam which is sagging in nature. The equilibrium 

equations are applied to determine the reactions at A and B (i.e., 
AV  and 

BV  are assumed to be 

acting in upward direction). 

0yF    
A B 0V V   (i.e., sum of all forces in vertical direction is equal to zero) 

0M    
A 1 0V L M   (i.e., sum of all moments about B is equal to zero) 

1
A

M
V

L


  (+ indicates that the assumed upward direction is correct)  

1
B

M
V

L


  ( indicates that the assumed upward direction is not correct; hence it is downwards) 

Take moment of all forces to the right of section XX by keeping the support B as origin, 

1
B 1 1

M
M V x M x M

L


       

in which,  1M x L  is hogging due to the reaction, and  1M  is sagging due to the applied 

moment. The variation of moment is a single continuous function for the entire span (i.e., for 

0 x L  ). Substituting the moment expression in the governing equation, 
2

1 1
1 12

M Md
EI x M x M

dx L L

  
     

 
 

The first and second integrations yield the expressions for slope and deflection respectively as  

A 
B max 

M1 

B A 

x 
L 
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2

1
1 1

2

Md x
EI M x C

dx L


      (2.44) 

3 2

1
1 1 2 

6 2

M x x
EI M C x C

L
         (2.45) 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At support B, the value of deflection is zero, 0x    0   

BC (ii): At support A, the value of deflection is zero, x L   0   

Applying the first boundary condition in Eq. (2.45) 

  3 21 1
1 20 (0) (0) (0)

6 2

M M
EI C C

L
         

 
2 0C   

Applying the second boundary condition and the value of 
2C  in Eq. (2.45) 

  3 21 1
10 ( ) ( ) ( ) (0)

6 2

M M
EI L L C L

L
         

 1
1

3

M L
C   

Therefore, the expressions respectively for finding the slope and deflections at any point between 

0x  and L  are obtained by replacing the values of the constants as, 

21 1
1

1

2 3

M M Ld
x M x

dx EI L

  
   

 
 (2.46) 

3 21 1 11
 

6 2 3

M M M L
x x x

EI L

 
    

 
 (2.47) 

(i) For obtaining the value of slope at B, substitute 0x   in Eq. (2.44). 

21 1 1
1

1
(0) (0)

2 3 3

M M L M Ld
M

dx EI L EI

  
      

 
 

1
Bθ

3

M L

EI
  

(ii) For obtaining the value of slope at A, substitute x L  in Eq. (2.44). 

21 1 1
1

1
( ) ( )

2 3 6

M M L M Ld
L M L

dx EI L EI

  
      

 
 

1
Bθ

6

M L

EI


  

(iii) For obtaining the value of deflection at the mid-span, substitute 2x L  in Eq. (2.45). 

     
2

3 21 1 1 1
mid-span

1
2 2 2

6 2 3 16

M M M L M L
L L L

EI L EI

 
        

 
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2

1
mid-span

16

M L

EI
 

2

10.0625
M L

EI
  

Since the loading on the beam is not symmetrical, the maximum deflection does not occur at the 

mid-span. The location of the maximum deflection can be obtained by equating the slope equation 

to zero. 

21 1
1

1
0

2 3

M M Ld
x M x

dx EI L

  
    

 
 

2 23 6 2 0x Lx L    

The solution of the above polynomial equation results in the following roots. 

 1.577 , 0.423x L L    

in which 0.423L  is the admissible root. Therefore, the maximum deflection occurs at 0.423x L  

from the support B. 

The maximum deflection is  

     
3 21 1 1

max 0.423

1
0.423 0.423 0.423

6 2 3x L

M M M L
L L L

EI L

 
         

 
  

2

10.06415
M L

EI
  

 

The double integration method was successfully adopted to solve the problems (Examples 2.1-2.8) 

due to the fact that, in each example, the moment variation throughout the length was represented 

by a single continuous function. However, when discontinuities exist, multiple functions are 

required to represent the moment variation, and consequently each function will result in two 

constants of integration during the integration process for slope and deflection.   

Consider a simply-supported beam of uniform flexural rigidity ( EI ) and length ( L ), which 

carries a concentrated lateral load (W ) at a distance “ a ” from B as shown in Figure 2.13.  The 

reactions at A and B are A

Wa
V

L
  and B

( )W L a
V

L


 . 

 

Figure 2.13 Simply supported beam with a point load  

 

 

W 

B A 
C 

x 

L 
a 
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Consider a section at a distance “ x ” from B; the bending moment at the section is 

if x a  then B

( )W L a
M V x x

L


   ; and 

if x a  then B

( )
( ) ( )

W L a
M V x W x a x W x a

L


         

2

2

( )
if 

( )
( ) if 

W L a
x x a

d L
EI

W L adx
x W x a x a

L


  

 
   



 (2.48) 

The first and second integrations yield the expressions for slope and deflection respectively as   

if x a ; 
2

1

( )

2

d W L a x
EI C

dx L

 
      (2.49) 

if x a ; 
2 2

1

( )

2 2

d W L a x x
EI W a x D

dx L

  
       

 
 (2.50) 

if x a ; 
3

1 2

( )

6

W L a x
EI C x C

L


         (2.51) 

if x a ; 
3 3 2

1 2

( )

6 6 2

W L a x x x
EI W a D x D

L

 
          

 
 (2.52) 

in which 
1C , 

2C , 
1D  and 

2D  are the arbitrary constants. The boundary conditions ( 0   when 

0x  ; and 0  when x L ) are insufficient to evaluate the constants. Therefore, continuity 

conditions need to be used further. 

For x a , the values of the slopes given by Eq. (2.49) and Eq. (2.50) are equal, and the 

deflections given by Eq. (2.51) and Eq. (2.52) are equal as there is continuity of the deflected form 

of the beam through the point C. By applying all the conditions, the constants are evaluated. 

  1 2
6

Wa
C L a L a

L
    

2 0C   

 2 2

1 2
6

Wa
D L a

L
   

3

2
6

Wa
D


  

Therefore, the final slope and deflection equations become 

if x a ;  2 2 2( )
2 3

2 6

d W L a Wa
EI x L La a

dx L L

 
       (2.53) 

if x a ;    2 2 2 2( )
2 2

2 2 6

d W L a W Wa
EI x x ax L a

dx L L

 
       (2.54) 
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Eq. (2.54) can be written as 

if x a ;    
22 2 2( )

2 3
2 6 2

d W L a Wa W
EI x L La a x a

dx L L

 
        (2.55) 

Eq. (2.53) and Eq. (2.54) differ only by the last term of Eq. (2.55); if the last term of Eq. (2.55) is 

discarded when x a , then Eq. (2.55) may be used to determine the slope in all parts of the beam.  

Similarly, for deflection, 

if x a ;  3 2 2( )
2 3

6 6

W L a Wa
EI x L aL a x

L L


        (2.56) 

if x a ;    
3

3 3 2 2 2( )
3 2

6 6 6 6

W L a W Wa Wa
EI x x ax L a x

L L

 
         (2.57) 

Eq. (2.57) can be written as 

if x a ;    
33 2 2( )

2 3
6 6 6

W L a Wa W
EI x L aL a x x a

L L


         (2.58) 

Eq. (2.56) and Eq. (2.57) differ only by the last term of Eq. (2.58); if the last term of Eq. (2.58) is 

discarded when x a , then Eq. (2.58) may be used to define the deflected form in all parts of the 

beam. This kind of situations can be easily handled by adopting Macaulay’s method as explained 

in Section 2.7. 

 

2.7 Macaulay’s Method 

The double integration method gives the equation of the elastic curve for a beam when the moment 

variation can be expressed by a continuous function throughout the entire length. When 

discontinuities occur (e.g., cantilever beam subjected to multiple loads, simply supported beam 

with point loads or distributed loads for a portion of the span), the double integration method is 

adopted using Macaulay terms.  

Consider a cantilever beam with general loading as shown in Figure 2.14.  

 

Figure 2.14 Cantilever beam with multiple loads 

 

 

 

W1 W2 

W3 

a1 

L 
a2 

x 
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The governing differential equation of the elastic curve is written as  
2

2

d
EI M

dx


   

By taking the free end as origin, the variation of moment can be expressed in the form 

   
1 0

1 2 1 3 2M W x W x a W x a          (2.59) 

where quantities  i iW x a  represent the bending moments due to concentrated loads, and the 

square brackets   are  called Macaulay brackets which are defined as 

 
1

0 if  

if  

i

i

i

x a
x a

x a x a


  

 
 (2.60) 

Typically, when  i iW x a  is integrated, we get 

 
2

2
i i i i

x
W x a W a x C

 
      

 
  (2.61) 

However, when  i iW x a  is integrated, we get 

 
 

2

M
2

i

i i i

x a
W x a W C


     (2.62) 

with the difference between the two expressions being contained in the constant 
MC . This 

integration rules make use of the double integration method suitable for determining displacements 

of beams with discontinuous functions. Therefore, the term  i iW x a  should be integrated with 

respect to  ix a  and not x . Also, the term  i iW x a  is applicable only for 
ix a  or  ix a  is 

positive. That means, Macaulay terms should be integrated with respect to themselves and must be 

neglected when they are negative. 

 

2.7.1 Numerical Examples 

Example 2.9: A simply supported beam of span L  is subjected to a mid-span point load W . Using 

the Macaulay’s method, determine the slope at the supports and deflection at the mid-span. 

Solution:  

The simply supported beam with mid-span point load and the displacement responses are shown in 

Figure 2.15. By applying the equilibrium conditions, the reactions are obtained. 

A
2

W
V   and B

2

W
V  . 

The governing differential equation of the elastic curve is  
2

2

d
EI M

dx


   
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Figure 2.15 Simply supported beam with mid-span point load (Example 2.9) 

In this example, the moment variation cannot be expressed by a single equation for the entire length. 

By taking B as origin, the moment at the section XX is expressed as 

if 0
2 2

if 
2 2 2

W L
x x

M
W L L

x W x x L


  

 
        

  

 (2.63) 

The first line of Eq. (2.63) is valid, if the value of x  lies between 0 and 2L  from B, and the second 

line is valid, if the value of x  lies between 2L  and L  from B.  However, the term 
2

W
x  is common 

in both the expressions. Therefore, Eq. (2.63) is written as 

2 2

W L
M x W x

 
   

 
 (2.64) 

The expression is partitioned by dotted lines. The first segment in Eq. (2.64) is considered when 

the moment is evaluated between B and C, and both first and second segments together are 

considered when the moment is evaluated between C and A, by keeping the origin as B.  

Substituting M  in the governing equation, and use of Macaulay’s terms as 

2

2 2 2

d W L
EI x W x

dx

  
    

 
 (2.65) 

The first and second integrations yield the expressions for slope and deflection respectively as 
2

2

1

2

2 2 2

L
x

d W x
EI C W

dx

 
   

       (2.66) 

3

3

1 2

2
 

2 6 6

L
x

W x
EI C x C W

 
 

 
          (2.67) 

From Eq. (2.66) and Eq. (2.67), two important observations can be made.  

C 
A B 

W 

B A 
C 

x 
L 

L/2 
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Firstly, the constants of integration 
1C  and 

2C  are placed within the first segment only as they 

are common for the entire expression.  If these constants are written at the end, there might be 

chance of omitting the constants while evaluating the first segment alone whenever needed.  

Secondly, bracket terms are integrated with respect to themselves. That means, the term 

 2x L  is integrated as 
 

2
2

2

x L
, but not as 

2

2 2

x L
x

 
  

 
. 

Two boundary conditions are identified as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, x L  0   

Since both the boundary conditions are corresponding to the deflection at two locations, Eq. (2.67) 

only can be used.  Substituting the first boundary condition (consider the first segment only as 

0x   lies in 0 2x L  ),  

  3

1 2 0 (0) (0)
12

W
EI C C        

2 0C   

Similarly, substituting the second boundary condition (consider both the first and second segments 

together), and the value of 
2C ,  

     
3

3

1 0 0
12 6 2

W W L
EI L C L L

 
         

 
  

2

1
16

WL
C   

Therefore, substituting the values of constants in Eq. (2.66) and Eq. (2.67) respectively gives the 

complete expressions for slope and deflection. 

22
21

4 16 2 2

d W WL W L
x x

dx EI

   
         

 (2.68) 

32
31

12 16 6 2

W WL W L
x x x

EI

  
          

 (2.69) 

(i) For determining the value of slope at B, substitute 0x   in Eq. (2.68) (by considering the 

first segment only). 
2

21
(0)

4 16

d W WL

dx EI

 
    

 
 

2

Bθ
16

WL

EI
   

(ii) For determining the value of slope at A, substitute x L  in Eq. (2.68) (by considering the 

first and second segments together). 
22

21
( ) ( )

4 16 2 2

d W WL W L
L L

dx EI

   
           
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2

Aθ
16

WL

EI
   

(iii) For determining the value of deflection at C (i.e., mid-span), substitute 2x L  in Eq. 

(2.69)  (by considering the first segment only). 
3 21

12 2 16 2

W L WL L

EI

    
         

     

 

3

C
48

WL

EI
   

Since the beam is symmetrically loaded, the maximum slope occurs at the supports, and the 

maximum deflection occurs at the mid-span location.  

2

maxθ
16

WL

EI
   

and 
3

max C
48

WL

EI
     

 

Example 2.10: A simply supported beam of span L  is subjected to a point load W  at a distance of 

“ a ” from the right support. Using the Macaulay’s method, determine the slope at the support 

locations and deflection under the load. Also find the maximum deflection. 

Solution:  

The simply supported beam with a point load is shown in Figure 2.16. By applying the equilibrium 

conditions, the reactions are obtained. 

A

Wa
V

L
  

B

( )W L a
V

L


  

 

Figure 2.16 Simply supported beam with a point load (Example 2.10) 

 

 

W 

B A 
C 

x 

L 
a 
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The governing differential equation of the elastic curve is  
2

2

d
EI M

dx


   

In this example, the moment variation cannot be expressed by a single equation for the entire length. 

By taking B as origin, the moment at the section is expressed as 

 

( )
if 0

( )
if 

W L a
x x a

L
M

W L a
x W x a a x L

L


  

 
      



 (2.70) 

The first line of Eq. (2.70) is valid, if the value of x  lies between 0 and a  from B, and the second 

line is valid, if the value of x  lies between a  and L  from B.  However, the term 
( )W L a

x
L


 is 

common in both the expressions. Therefore, Eq. (2.70) is written as 

 
( )W L a

M x W x a
L


    (2.71) 

The expression is partitioned by dotted lines. The first segment in Eq. (2.71) is considered when 

the moment is evaluated between B and C, and both the first and second segments together are 

considered when the moment is evaluated between C and A, by keeping the origin as B.  

Substituting M  in the governing equation, and use of Macaulay’s terms as 

 
2

2

( )d W L a
EI x W x a

dx L

 
     (2.72) 

The first and second integrations yield the expressions for slope and deflection respectively as  

 
22

1

( )

2 2

x ad W L a x
EI C W

dx L

 
       

 
33

1 2

( )
 

6 6

x aW L a x
EI C x C W

L


          

Two boundary conditions are identified as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, x L  0   

Substituting the first boundary condition (as 0x   lies in the first segment, consider the first 

segment only),  

 
3

1 2

( ) (0)
0 (0)

6

W L a
EI C C

L


        

2 0 C   
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Similarly, substituting the second boundary condition (as x L  lies in the second segment, 

consider both the first and second segments together),  

 
 

33

1

( ) ( )
0 ( ) (0)

6 6

L aW L a L
EI C L W

L


           2 2 3

1 2 3
6

W
C L a La a

L
    

Therefore, the expressions for slope and deflection are 

   
22 2 2 31 ( )

2 3
2 6 2

d W L a W W
x L a La a x a

dx EI L L

  
       

 
 (2.73) 

   
33 2 2 31 ( )

 2 3
6 6 6

W L a W W
x L a La a x x a

EI L L

 
        

 
 (2.74) 

(i) For determining the value of slope at B, substitute 0x   in Eq. (2.73) (by considering the 

first segment only). 

   2 2 2 3 2 21 ( )
(0) 2 3 2 3

2 6 6

d W L a W Wa
L a La a L La a

dx EI L L EIL

  
         

 
 

 2 2

Bθ 2 3
6

Wa
L La a

EIL
     

(ii) For determining the value of slope at A, substitute x L  in Eq. (2.73) (by considering the 

first and second segments together). 

     
22 2 2 3 2 21 ( )

( ) 2 3 ( )
2 6 2 6

d W L a W W Wa
L L a La a L a L a

dx EI L L EIL

   
          

 
 

 2 2

Aθ
6

Wa
L a

EIL


    

(iii) For determining the value of deflection the mid-span, substitute 2x L  in Eq. (2.74); 

 

 

33

2 2 3

mid-span

2 3

1 ( )
2 3

6 2 6 2 6 2

3 4
48

W L a L W L W L
L a La a a

EI L L

W
L a a

EI

        
                        

 

 

 2 3

mid-span 3 4
48

W
L a a

EI
    

The location of the maximum deflection can be obtained by equating the slope equation to zero. If

2a L , 

   
22 2 2 31 ( )

2 3 0
2 6 2

W L a W W
x L a La a x a

EI L L

 
       
 
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By solving the above equation, the admissible root obtained as;  2 21
3

3
x L L a    . Therefore, 

the maximum deflection is  

 
3 2

2 2

max
9 3

a L aW

EI L


   

When the load acts at the mid-span, the above formulas can be verified with Example 2.8 by 

substituting 2a L . 

 

Example 2.11: A cantilever beam of span 6 m is subjected to three concentrated loads of 30 kN, 25 

kN and 20 kN respectively at 3 m, 5 m and 6 m from the fixed end. Using the Macaulay’s method, 

determine the slope and deflection at the salient locations. 

Solution:  

The cantilever beam with loads is shown in Figure 2.17. The governing differential equation of the 

elastic curve is  

2

2

d
EI M

dx


   

 

Figure 2.17 Cantilever beam with multiple loads (Example 2.11) 

Take moment of all forces to the right of section by keeping the free end D as origin, 

   20 25 1 30 3M x x x          

Substituting the moment expression in the governing equation, 

   
2

2
20 25 1 30 3

d
EI x x x

dx


       

The first and second integrations yield the expressions for slope and deflection respectively as  

   
2 22

1

1 3
20 25 30

2 2 2

x xd x
EI C

dx

  
       

 
 

   
3 33

1 2

1 3
20 25 30

6 6 6

x xx
EI C x C

  
          

 
 

B 

30 kN 

A C 

25 kN 20 kN 

D 

3 m 2 m 1 m 

x 
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where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, 6x   0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 6x   0   

Substituting the first boundary condition in the slope equation 

 
     

2 22

1

6 1 6 36
0 20 25 30

2 2 2
EI C

 
         

1 807.5C    

Similarly, substituting the second boundary condition and the value of 
1C  in the deflection equation 

 
   

3 33

2

6 1 6 36
0 20 807.5 (6) 25 30

6 6 6
EI C

  
         

 
  

 
2 3469.167C   

Therefore, after substituting the value of 
1C  and 

2C , the slope and deflection equations  

   
2 221 25

10 807.5 1 15 3
2

d
x x x

dx EI

 
      

 
 (2.75) 

   
3 331 10 25

807.5 3469.167 1 5 3
3 6

x x x x
EI

 
        

 
 (2.76) 

Eq. (2.75) and Eq. (2.76) are the complete expressions respectively for determining the slope and 

the deflection at any point between 0x  and 6 mx  . 

(i) For determining the values of slope at D, C and B, substitute 0x  , 1 and 3 in Eq. (2.75). The 

first segment only is considered for 
Dθ . Both the first and second segments are considered  for 

Cθ , and the first, second and third segments are considered for 
Bθ . 

 2

D

0

1 807.5
θ 10 (0) 807.5

x

d

dx EI EI

 
      radians 

 
22

C

1

1 25 797.5
θ 10 (1) 807.5 (1) 1

2x

d

dx EI EI

  
        

 
 radians 

   
2 22

B

3

1 25 667.5
θ 10 (3) 807.5 (3) 1 15 (3) 3

2x

d

dx EI EI

  
           

 
 radians 

(ii) For determining the values of deflection at D, C and B, substitute 0x  , 1 and 3 in Eq. (2.76). 

The first segment only is considered for 
D . Both first and second segments are considered  

for 
C , and the first, second and third segments are considered for 

B . 

3

D 0

1 10 3469.167
(0) 807.5 (0) 3469.167

3x EI EI

 
         

 
 m 
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 
33

C 1

1 10 25 2665.0
(1) 807.5 (1) 3469.167 (1) 1

3 6x EI EI

 
            

 
 m 

   
3 33

B 3

1 10 25
(3) 807.5 (3) 3469.167 (3) 1 5 (3) 3

3 6

1170.0
 m

x EI

EI



 
              

 



 

 

Example 2.12: A cantilever beam of span 6 m is subjected to three loads: (i) 25 kN at the free end; 

(ii) 20 kN at 1 m from the free end; and (iii) 10 kN/m over the span of 3 m from the fixed end. 

Using the Macaulay’s method, determine the slope and deflection at the salient locations. 

Solution:  

The cantilever beam with loads is shown in Figure 2.18. The governing differential equation of the 

elastic curve is  

2

2

d
EI M

dx


   

 

Figure 2.18 Cantilever beam with multiple loads (Example 2.12)  

Take moment of all forces to the right of section by keeping the free end D as origin, 

   
 3

25 20 1 10 3
2

x
M x x x


           

Substituting the moment expression in the governing equation, 

   
2

2

2
25 20 1 5 3

d
EI x x x

dx


      

The first and second integrations yield the expressions for slope and deflection respectively as  

   
2 32

1

1 3
25 20 5

2 2 3

x xd x
EI C

dx

  
       

 
 

   
3 43

1 2

1 3
25 20 5

6 6 12

x xx
EI C x C

  
          

 
 

x 

B 
A 

10 kN/m 

C 

20 kN 25 kN 

D 

3 m 2 m 1 m 
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where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, 6x   0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 6x   0   

Substituting the first boundary condition in the slope equation 

 
   

2 32

1

6 1 6 36
0 25 20 5

2 2 3
EI C

  
       

 
  

1 745.0C    

Similarly, substituting the second boundary condition and the value of 
1C  in the deflection equation 

 
   

3 43

2

6 1 6 36
0 25 745.0 6 20 5

6 6 12
EI C

  
         

 
  

 
2 3119.583C   

Therefore, after substituting the value of 
1C  and 

2C , the slope and deflection equations  

   
2 321 25 5

745 10 1 3
2 3

d
x x x

dx EI

 
      

 
 (2.77) 

   
3 431 25 10 5

745 3119.583 1 3
6 3 12

x x x x
EI

 
        

 
 (2.78) 

Eq. (2.77) and Eq. (2.78) are the complete expressions respectively for determining the slope and 

the deflection at any point between 0x  and 6 mx  . 

For determining the values of slope at D, C and B, substitute 0x  , 1 and 3 in Eq. (2.77). The 

first segment only is considered for 
Dθ . Both the first and second segments are considered  for 

Cθ

and the first, second and third segments are considered for 
Bθ . 

2

D

0

1 25 745
θ (0) 745

2x

d

dx EI EI

  
     

 
 radians 

 
22

C

1

1 25 732.5
θ (1) 745 10 (1) 1

2x

d

dx EI EI

  
        

 
 radians 

   
2 32

B

3

1 25 5 592.5
θ (3) 745 10 (3) 1 (3) 3

2 3x

d

dx EI EI

  
           

 
 radians 

For determining the values of deflection at D, C and B, substitute 0x  , 1 and 3 in Eq. (2.78). 

The first segment only is considered for 
D . Both the first and second segments are considered  for 

C , and the first, second and third segments are considered for 
B . 

3

D 0

1 25 3119.583
(0) 745 (0) 3119.583  m

6x EI EI

 
         

 
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 
33

C 1

1 25 10 2378.75
(1) 745 (1) 3119.583 (1) 1  m

6 3x EI EI

 
            

 
 

   
3 43

B 3

1 25 10 5
(3) 745 (3) 3119.583 (3) 1 (3) 3

6 3 12

1023.75
                  m

x EI

EI



 
              

 



  

 

Example 2.13: A cantilever beam of span 7 m is subjected to a concentrated load of 25 kN at 1 m 

from the fixed end, and a uniformly distributed load of 10 kN/m over a span of 4 m from the free 

end. Using the Macaulay’s method, determine the slope and deflection at the salient locations. 

Solution:  

The cantilever beam with loads is shown in Figure 2.19(i). The governing differential equation of 

the elastic curve is  
2

2

d
EI M

dx


   

 

Figure 2.19 Cantilever beam with multiple loads (Example 2.13) 

Take moment of all forces to the right of section in Figure 2.19(i) by keeping the free end D as 

origin, 

10 2 if 0 4

10 4 ( 2) if 4 6

10 4 ( 2) 25 ( 6) if 6 7

x x x

M x x

x x x

    


      
        

 

 

25 kN 

A 
10 kN/m 

C D B 

x 

4 m 2 m 1 m 

25 kN 
10 kN/m 

10 kN/m 

(i)  Loads given 

(ii)  Loads considered 
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In order to use the Macaulay’s method, the moment expression obtained for the first segment should 

appear in the moment expression of the second segment. Similarly, the moment expression 

obtained for the second segment should appear in the moment expression of the third segment. 

Since the uniformly distributed load is terminated at C, the moment of this force in the first, second 

and third segments will not remain the same; and this is possible only if the distributed load is 

continued till the end of the last segment. Therefore, the uniformly distributed load (with same 

magnitude) is assumed to continue till the end (i.e., A) from C, and a uniformly distributed load 

(with same magnitude) in the opposite direction is included between C and A to neutralize the 

effect of the assumed load as shown in Figure 2.19(ii).  

Therefore, the moment expression becomes 

 
 

 
4

10 10 4 25 6
2 2

xx
M x x x


            

Substituting the moment expression in the governing equation, 

   
2

22

2
5 5 4 25 6

d
EI x x x

dx


      

The first and second integrations yield the expressions for slope and deflection respectively as  

   
3 23

1

4 6
5 5 25

3 3 2

x xd x
EI C

dx

  
       

 
 

   
4 34

1 2

4 6
5 5 25

12 12 6

x xx
EI C x C

  
          

 
 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, 7x   0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 7x   0   

Substituting the first boundary condition in the slope equation 

 
   

3 23

1

7 4 7 67
0 5 5 25

3 3 2
EI C

  
       

 
  

 
1 539.167C    

Similarly, substituting the second boundary condition and the value of 
1C  in the deflection equation 

 
   

4 34

2

7 4 7 67
0 5 539.167 (7) 5 25

12 12 6
EI C

  
         

 
  

 
2 2803.336C   

Therefore, after substituting the value of 
1C  and 

2C , the slope and deflection equations  
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   
3 231 5 5 25

539.167 4 6
3 3 2

d
x x x

dx EI

 
      

 
 (2.79) 

   
4 341 5 5 25

539.167 2803.336 4 6
12 12 6

x x x x
EI

 
        

 
 (2.80) 

Eq. (2.79) and Eq. (2.80) are the complete expressions respectively for determining the slope and 

the deflection at any point between 0x  and 7 mx  . 

For determining the values of slope at D, C and B, substitute 0x  , 4 and 6 in Eq. (2.79). The 

first segment only is considered for 
Dθ . Both the first and second segments are considered  for 

Cθ  

and the first, second and third segments are considered for 
Bθ . 

3

D

0

1 5 539.167
θ (0) 539.167

3x

d

dx EI EI

  
     

 
 radians 

 
33

C

4

1 5 5 432.5
θ (4) 539.167 4 4

3 3x

d

dx EI EI

  
        

 
 radians 

   
3 23

B

6

1 5 5 25 192.5
θ (6) 539.167 6 4 6 6

3 3 2x

d

dx EI EI

  
           

 
 radians 

For determining the values of deflection at D, C and B, substitute 0x  , 4 and 6 in Eq. (2.80). 

The first segment only is considered for 
D . Both the first and second segments are considered  for 

C , and the first, second and third segments are considered for 
B . 

4

D 0

1 5 2803.336
(0) 539.167 (0) 2803.336  m

12x EI EI

 
         

 
 

 
44

C 4

1 5 5
(4) 539.167 (4) 2803.336 4 4

12 12x EI

 
           

 
 

753.335

EI
  m 

   
4 34

B 6

1 5 5 25
(6) 539.167 (6) 2803.336 6 4 6 6

12 12 6x EI

 
              

 
  

101.667

EI
  m 
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Example 2.14: A cantilever beam of span 9 m is subjected to a concentrated load of 30 kN at the 

free end, and a uniformly distributed load of 20 kN/m over a span of 4 m starting at 2 m from the 

fixed end. Using the Macaulay’s method, determine the slope and deflection at the salient locations. 

Solution:  

The cantilever beam with loads is shown in Figure 2.20(i).  

 

Figure 2.20 Cantilever beam with multiple loads (Example 2.14) 

The governing differential equation of the elastic curve is  

2

2

d
EI M

dx


   

Similar to Example 2.13, the uniformly distributed load of 20 kN/m is added in the segment AB 

both in downward and upward directions as shown in Figure 2.20(ii).  Take moment of all forces 

to the right of section in Figure 2.19(ii) by keeping the free end D as origin, 

 
 

 
 3 7

30 20 3 20 7
2 2

x x
M x x x

 
            

Substituting the moment expression in the governing equation, 

   
2

2 2

2
30 10 3 10 7

d
EI x x x

dx


      

The first and second integrations yield the expressions for slope and deflection respectively as  

   
3 32

1

3 7
30 10 10

2 3 3

x xd x
EI C

dx

  
       

 
 

   
4 43

1 2

3 7
30 10 10

6 12 12

x xx
EI C x C

  
          

 
 

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

(i)  Loads given 

(ii)  Loads considered 

A 
C D B 

3 m 4 m 2 m 

x 

20 kN/m 
30 kN 

20 kN/m 
30 kN 

20 kN/m 
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BC (i): At the fixed end, the value of slope is zero, 9x   0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 9x   0   

Substituting the first boundary condition in the slope equation 

 
   

3 32

1

9 3 9 79
0 30 10 10

2 3 3
EI C

  
       

 
  

1 1908.333C    

Similarly, substituting the second boundary condition and the value of 
1C  in the deflection equation 

 
   

4 43

2

9 3 9 79
0 30 1908.333 (9) 10 10

6 12 12
EI C

  
         

 
  

2 12463.330C   

Therefore, after substituting the value of 
1C  and 

2C , the slope and deflection equations  

   
3 321 10 10

15 1908.333 3 7
3 3

d
x x x

dx EI

 
      

 
 (2.81) 

   
4 431 5 5

5 1908.333 12463.330 3 7
6 6

x x x x
EI

 
        

 
 (2.82) 

Eq. (2.81) and Eq. (2.82) are the complete expressions respectively for determining the slope and 

the deflection at any point between 0x  and 9 mx  . 

For determining the values of slope at D, C and B, substitute 0x  , 3 and 7 in Eq. (2.77). The 

first segment only is considered for 
Dθ . Both the first and second segments are considered  for 

Cθ

and the first, second and third segments are considered for 
Bθ . 

 3

D

0

1 1908.333
θ 15 (0) 1908.333

x

d

dx EI EI

 
      radians 

 
32

C

3

1 10 1773.333
θ 15 (3) 1908.333 3 3

3x

d

dx EI EI

  
        

 
 radians 

   
3 32

B

7

1 10 10 960.0
θ 15 (7) 1908.333 7 3 7 7

3 3x

d

dx EI EI

  
           

 
 radians 

For determining the values of deflection at D, C and B, substitute 0x  , 3 and 7 in Eq. (2.82). 

The first segment only is considered for 
D . Both the first and second segments are considered  for 

C , and the first, second and third segments are considered for 
B . 

 3

D 0

1 14463.330
5 (0) 1908.333 (0) 12463.330  m

x EI EI
          

 
43

C 3

1 5 6873.331
5 (3) 1908.333 (3) 12463.330 3 3  m

6x EI EI

 
            

 
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   
4 43

B 7

1 5 5
5 (7) 1908.333 (7) 12463.330 7 3 7 7

6 6

1033.332
                  m

x EI

EI



 
              

 



 

 

Example 2.15: A cantilever beam of span 10 m is subjected to the lateral loads as shown in Figure 

2.21. Using the Macaulay’s method, determine the slope and deflection at the salient locations. 

 

Figure 2.21 Cantilever beam with multiple loads (Example 2.15) 

Solution:  

The governing differential equation of the elastic curve is  

2

2

d
EI M

dx


   

Similar to Example 2.13, the uniformly distributed load of 5 kN/m is added in the segment BA both 

in downward and upward directions. Take moment of all forces to the right of section by keeping 

the free end E as origin, 

     
 

   
 5 8

0 20 2 30 5 5 5 40 8 5 8
2 2

x x
M x x x x x x

 
                     

Since no lateral load is applied in the segment ED, there is no bending moment in the segment. 

However, due to the bending of other segments, both slope and deflection will exist in the segment 

ED. Moreover, the constants of integration should appear in the first segment only. Therefore, zero 

moment is kept in the first segment. 

Substituting the moment expression in the governing equation, 

         
2

2 2

2

5 5
0 20 2 30 5 5 40 8 8

2 2

d
EI x x x x x

dx


            

The first and second integrations yield the expressions for slope and deflection respectively as  

         
2 2 3 2 3

1

2 5 5 8 85 5
0 20 30 40

2 2 2 3 2 2 3

x x x x xd
EI C

dx

    
             

A 
C E B D 

5 kN/m 
20 kN 40 kN 30 kN 

2 m 2 m 3 m 

x 

3 m 
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         
3 3 4 3 4

1 2

2 5 5 8 85 5
0 20 30 40

6 6 2 12 6 2 12

x x x x x
EI C x C

    
                

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the fixed end, the value of slope is zero, 10x   0d dx   

BC (ii): At the fixed end, the value of deflection is zero, 10x   0   

Substituting the first boundary condition in the slope equation, 

 
         

2 2 3 2 3

1

10 2 10 5 10 5 10 8 10 85 5
0 0 20 30 40

2 2 2 3 2 2 3
EI C

    
           

  
1 1192.5C    

Similarly, substituting the second boundary condition and the value of 
1C  in the deflection equation  

 
   

     

3 3

2

4 3 4

10 2 10 5
0 0 1192.5 (10) 20 30

6 6

10 5 10 8 10 85 5
40

2 12 6 2 12

EI C
 

       

  
     

  

 
2 9413.125C   

Therefore, after substituting the value of 
1C  and 

2C , the slope and deflection equations:  

         
2 2 3 2 31 5 5

1192.5 10 2 15 5 5 20 8 8
6 6

d
x x x x x

dx EI

 
            

 
 (2.83) 

     

   

3 3 4

3 4

10 5
1192.5 9413.125 2 5 5 5

1 3 24
20 5

8 8
3 24

x x x x

EI
x x

 
        

   
     
 

 (2.84) 

Eq. (2.83) and Eq. (2.84) are the complete expressions respectively for determining the slope and 

the deflection at any point between 0x  and 10 mx  . 

For determining the values of slope at E, D, C and B, substitute 0x  , 2, 5 and 8 in Eq. (2.83). 

The first segment only is considered for 
Eθ . Both the first and second segments are considered  for 

Dθ . The first, second and third segments are considered for 
Cθ , and all four segments are 

considered for  
Bθ . 

 E

0

1 1192.5
θ 1192.5

x

d

dx EI EI

 
     radians 
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 
2

D

2

1 1192.5
θ 1192.5 10 2 2

x

d

dx EI EI

  
       

 
 radians 

     
2 2 3

C

5

1 5
θ 1192.5 10 5 2 15 5 5 5 5

6x

d

dx EI

 
            

 
 

1102.5

EI


  radians 

     

   

2 2 3

B
2 3

8

5
1192.5 10 8 2 15 8 5 8 5

1 6θ
5

20 8 8 8 8
6

x

d

dx EI

 
          

   
       
 

  

675.0

EI


 radians 

For determining the values of deflection at E, D, C and B, substitute 0x  , 2, 5 and 8 in Eq. 

(2.84). The first segment only is considered for 
E . Both the first and second segments are 

considered  for 
D . The first, second and third segments are considered for 

C , and all the four 

segments are considered for  
B . 

 E 0

1 9413.125
1192.5 0 9413.125  m

x EI EI
         

 
3

D 2

1 10 7028.125
1192.5 (2) 9413.125 2 2  m

3x EI EI

 
           

 
 

 

   

3

C 5
3 4

10
1192.5 (5) 9413.125 5 2

1 3540.6253  m
5

5 5 5 5 5
24

x EI EI

 
      

     
       
 

 

     

   

3 3 4

B 8
3 4

10 5
1192.5 (8) 9413.125 8 2 5 8 5 8 5

1 3 24
20 5

8 8 8 8
3 24

x EI

 
            

     
       
 

 

745.0

EI
  m 
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Example 2.16: A simply supported beam of span 9 m is subjected to two concentrated loads of 40 

kN and 30 kN at 2 m and 5 m respectively from the left support. Using the Macaulay’s method, 

determine (i) the slope at the supports, (ii) the slope at the loading points, (iii) the deflection at the 

loading points, and (iv) the maximum deflection. 

Solution:   

The simply supported beam with two point loads is shown in Figure 2.22.  

 

Figure 2.22 Simply supported beam with two point loads (Example 2.16) 

The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 40 30 0V V      

 
A B 70V V   

B 0M    
A 9 40 7 30 4 0V        

A 44.444V   kN 

B 25.556V   kN 

By taking B as origin, the moment of all the forces on the right of the section is 

       B 30 4 40 7 25.556 30 4 40 7M V x x x x x x              

The expression is partitioned by dotted lines. The first segment is considered when the moment is 

evaluated between B and D; both the first and second segments together are considered when the 

moment is evaluated between D and C; and the first, second and third segments together are 

considered when the moment is evaluated between C and A by keeping the origin as B.  

The governing differential equation of the elastic curve is  

2

2

d
EI M

dx


   

Substituting M  in the governing equation, 

   
2

2
25.556 30 4 40 7

d
EI x x x

dx


       

The first and second integrations yield the expressions for slope and deflection respectively as  

40 kN 

2 m 3 m 4 m 

x 

30 kN 

B A C D 
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   
2 22

1

4 7
25.556 30 40

2 2 2

x xd x
EI C

dx

 
         

   
3 33

1 2

4 7
 25.556 30 40

6 6 6

x xx
EI C x C

 
            

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, 9x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3

1 2

(0)
 0 25.556 (0)

6
EI C C        

 
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 
   

3 33

1

9 4 9 7(9)
 0 25.556 (9) 0 30 40

6 6 6
EI C

 
            

 
1 269.636C   

Therefore, the complete expressions for slope and deflection: 

   
2 221

12.778 269.636 15 4 20 7
d

x x x
dx EI

 
       

 
 (2.85) 

   
3 331

 4.259 269.636 5 4 6.667 7x x x x
EI

 
        

 
 (2.86) 

(i) The values of slope at the supports: 

 2

B

0

1 269.636
12.778 (0) 269.636

x

d

dx EI EI





       radians 

   
2 22

A

9

1
12.778 (9) 269.636 15 9 4 20 9 7

x

d

dx EI




 
           

 
  

310.382

EI


  radians 

 

 



Theory of Structures| 97 

 

(ii) The values of slope at the loading points: 

 
22

D

4

1 65.188
12.778 (4) 269.636 15 4 4

x

d

dx EI EI




 
         

 
 m 

   
2 22

C

7

1
12.778 (7) 269.636 15 7 4 20 7 7

x

d

dx EI




 
           

 
 

221.43

EI


 m 

(iii) The values of deflection at the loading points: 

 
33

D 4

1 805.968
 4.259 (4) 269.636 (4) 5 4 4

x EI EI

 
            

 
 m 

   
3 33

C 7

1
 4.259 (7) 269.636 (7) 5 7 4 6.667 7 7

x EI

 
             

 
  

561.615

EI
 m 

(iv) Maximum deflection: 

The maximum deflection in simply supported beams occurs where the direction of slope 

changes (i.e., 0d dx  ). Assume the direction of slope changes in the first segment (i.e., BD). 

Therefore, only the first segment should be considered. 

 21
12.778 269.636 0

d
x

dx EI


     

212.778 269.636 0x     
1 4.594x    and 

2 4.594x    

Both the values of x  are inadmissible because they do not lie in the segment BD. Therefore, the 

assumption is not correct.  

Now, assume the direction of slope changes in the second segment (i.e., DC). Therefore, the 

first and second segments together should be considered. 

 
221

12.778 269.636 15 4 0
d

x x
dx EI

 
      

 
 

22.222 120 509.636 0x x     
1 49.359x   and 

2 4.647x    

Therefore, 4.647x   m is the admissible root. 

 
33

max 4.647

1
  4.259 (4.647) 269.636 (4.647) 5 4.647 4

x EI

 
           

 
  

826.961

EI
 m 
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Example 2.17: A simply supported beam of span 6 m is subjected to three concentrated loads of 60 

kN, 100 kN and 40 kN at 1 m, 3 m and 4 m respectively from the left support. Using the Macaulay’s 

method, determine the maximum slope and deflection. 

Solution:   

The simply supported beam with three point loads is shown in Figure 2.23. 

 

Figure 2.23 Simply supported beam with three point loads (Example 2.17) 

The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 60 100 75 0V V       

 
A B 235V V   

B 0M    
A 5 60 5 100 3 75 2 0V          

Therefore, 
A 125.0V   kN and 

B 110.0V   kN.  

By taking B as origin, the moment of all the forces on the right of the section is 

     

     

B 75 2 100 3 60 5

110 75 2 100 3 60 5

M V x x x x

x x x x

          

      

 

The expression is partitioned by dotted lines for different segments. The governing differential 

equation of the elastic curve after substituting M  is  

     
2

2
110 75 2 100 3 60 5

d
EI x x x x

dx


         

The first and second integrations yield the expressions for slope and deflection respectively as  

     
2 2 22

1

2 3 5
110 75 100 60

2 2 2 2

x x xd x
EI C

dx

  
           

     
3 3 33

1 2

2 3 5
 110 75 100 60

6 6 6 6

x x xx
EI C x C

  
              

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

60 kN 100 kN 75 kN 

1 m 

x 

2 m 2 m 1 m 

B A C D E 
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BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, 6x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3

1 2

(0)
 0 110 (0)

6
EI C C        

 
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 
     

3 3 33

1

6 2 6 3 6 5(6)
 0 110 (6) 0 75 100 60

6 6 6 6
EI C

  
             

 
1 450.0C   

Therefore, the complete expressions for slope and deflection; 

     
2 2 221

55 450 37.5 2 50 3 30 5
d

x x x x
dx EI

 
         

 
 (2.87) 

     
3 3 331

 18.333 450 12.5 2 16.667 3 10 5x x x x x
EI

 
          

 
 (2.88) 

(i) Maximum slope: 

The maximum slope in simply supported beam occurs at one of the support locations. 

 2

B

0

1 450
55 (0) 450

x

d

dx EI EI





       radians 

     
2 2 22

A

6

1
55 (6) 450 37.5 6 2 50 6 3 30 6 5

x

d

dx EI




 
              

 
 

450

EI


  radians 

Therefore, the maximum slope is max

450

EI
   radians 

(ii) Maximum deflection: 

The maximum deflection in simply supported beams occurs where the direction of slope 

changes (i.e., 0d dx  ). Since the values of slope at the supports (i.e., ends) are same but opposite 

in sign, the change of sign mostly occurs around the mid-point. Assume the direction of slope 

changes in the second segment (i.e., ED). Therefore, the first and second segments together are 

considered. 

 
221

55 450 37.5 2 0
d

x x
dx EI

 
      

 
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217.5 150 600 0x x      

 
1 2.971x   and 

2 11.542x    

Therefore, 2.971x   m is the admissible solution. 

 
33

max 2.971

1 867.619
  18.333 (2.971) 450 (2.971) 12.5 2.971 2

x EI EI

 
           

 
 m 

Note: The deflection at the mid-span is, mid-spam 3

867.509
  

x EI
     m 

 

Example 2.18: A simply supported beam of span 10 m is subjected to a uniformly distributed load 

of 10 kN/m over a span of 6 m from the left support, and a point load of 20 kN at 3 m from the 

right support. Using the Macaulay’s method, determine the maximum slope and deflection. 

Solution:   

The simply supported beam with multiple loads is shown in Figure 2.24. 

 

Figure 2.24 Simply supported beam with multiple loads (Example 2.18) 

The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 10 6 20 0V V       

 
A B 80V V   

B 0M    
A

6
10 10 6 4 20 3 0

2
V

 
        

 
 

A 48.0V   kN  

B 32.0V   kN 

By taking B as origin, the moment of all the forces on the right of the section is 

   
 

   
2

B

4
20 3 10 4 32 20 3 5 4

2

x
M V x x x x x x


               

The expression is partitioned by dotted lines for different segments. The governing differential 

equation of the elastic curve is  

B A 
C D 

1 m 
x 

3 m 6 m 

20 kN 
10 kN/m 
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   
2

2

2
32 20 3 5 4

d
EI x x x

dx


       

The first and second integrations yield the expressions for slope and deflection respectively as  

   
2 32

1

3 4
32 20 5

2 2 3

x xd x
EI C

dx

 
         

   
3 43

1 2

3 4
 32 20 5

6 6 12

x xx
EI C x C

 
            

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, 10x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3

1 2

(0)
 0 32 (0)

6
EI C C        

 
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 
   

3 43

1

10 3 10 410
 0 32 (10) (0) 20 5

6 6 12
EI C

 
            

 
1 365.0C   

Therefore, the complete expressions for slope and deflection: 

   
2 321

16 365 10 3 1.667 4
d

x x x
dx EI

 
       

 
 (2.89) 

   
3 431

 5.333 365 3.333 3 0.417 4x x x x
EI

 
        

 
 (2.90) 

(iii) Maximum slope: 

The maximum slope in simply supported beam occurs at one of the support locations. 

 2

B

0

1 365
16 (0) 365

x

d

dx EI EI





       radians 

   
2 32

A

10

1
16 (10) 365 10 10 3 1.667 10 4

x

d

dx EI




 
           

 
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384.928

EI


 radians 

Therefore, the maximum slope is max

384.928

EI
   radians 

(iv) Maximum deflection: 

The maximum deflection in simply supported beam occurs where the direction of slope 

changes (i.e., 0d dx  ). Since the values of the slopes at end ends are nearly same but opposite 

in sign, the change of sign mostly occurs around the mid-point. Assume the direction of slope 

changes in the third segment (i.e., CA). Therefore, all the three segments together are considered. 

   
2 321

16 365 10 3 1.667 4 0
d

x x x
dx EI

 
        

 
 

 3 21.667 26 20 348.312 0x x x     

1 13.580x  , 
2 5.058x   and 

3 3.042x    

Therefore, 5.058x   m is the admissible solution. 

 

 

33

max 5.058
4

5.333 (5.058) 365 (5.058) 3.333 5.058 31
  

0.417 5.058 4
x EI

 
          
 
    

  

1185.650

EI
 m 

 

Example 2.19: A simply supported beam of span 10 m is subjected to a point load of 50 kN at 6 m 

from the right support, and a uniformly distributed load of 10 kN/m spanning over 6 m from the 

left hand support. Determine the maximum slope and deflection. 

Solution:   

The simply supported beam with multiple loads is shown in Figure 2.25. 

 

Figure 2.25 Simply supported beam with multiple loads (Example 2.19) 

 

 

B A 
C D 

x 

4 m 4 m 2 m 

50 kN 
10 kN/m 
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The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 10 6 50 0V V       

 
A B 110V V   

B 0M    
A

6
10 10 6 4 50 6 0

2
V

 
        

 
 

Therefore, 
A 72.0V   kN and 

B 38.0V   kN.  

By taking B as origin, the moment of all the forces on the right of the section is 

 
 

     
2

B

4
10 4 50 6 38 5 4 50 6

2

x
M V x x x x x x


               

The expression is partitioned by dotted lines for different segments. The governing differential 

equation of the elastic curve is  

   
2

2

2
38 5 4 50 6

d
EI x x x

dx


       

The first and second integrations yield the expressions for slope and deflection respectively as  

   
3 22

1

4 6
38 5 50

2 3 2

x xd x
EI C

dx

 
         

   
4 33

1 2

4 6
 38 5 50

6 12 6

x xx
EI C x C

 
            

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, 10x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3

1 2

(0)
 0 38 (0)

6
EI C C        

  
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 
   

4 33

1

10 4 10 6(10)
 0 38 (10) 0 5 50

6 12 6
EI C

 
            

  
1 526.0C   
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Therefore, the complete expressions for slope and deflection: 

   
3 221

19 526 1.667 4 25 6
d

x x x
dx EI

 
       

 
 (2.91) 

   
4 331

 6.333 526 0.417 4 8.333 6x x x x
EI

 
        

 
 (2.92) 

(i) Maximum slope: 

The maximum slope in simply supported beam occurs at one of the support locations. 

 2

B

0

1 526
19 (0) 526

x

d

dx EI EI





       

   
3 22

A

10

1 613.928
19 (10) 526 1.667 10 4 25 10 6

x

d

dx EI EI




  
            

 
 radians 

Therefore, the maximum slope is max

613.928

EI
   radians 

(ii) Maximum deflection: 

The maximum deflection in simply supported beam occurs where the direction of slope 

changes (i.e., 0d dx  ). Assume the direction of slope changes in the second segment (i.e., DC).  

 
321

19 526 1.667 4 0
d

x x
dx EI

 
      

 
 

 3 21.667 39 80 419.312 0x x x      

  
1 20.447x  , 

2 5.279x   and 
3 2.330x    

Therefore, 5.279x   m is the admissible root. 

 
43

max 5.279

1
 6.333 (5.279) 526 (5.279) 0.417 5.279 4

x EI

 
           

 
  

1846.195

EI
  m 

 

Note: In Examples 2.162.19, the moment expression can be written by keeping the left support 

(i.e., A) as origin. However, in Examples 2.18 and 2.19, when the moment expression is written by 

taking A as origin, as the uniformly distributed load is discontinued, additional load should be 

assumed both in downward and in upward directions for the remaining portion till the end (i.e., B). 

Therefore, if the distributed load is given in the left end, then taking origin from the right end, and 

vise-versa would simplify the moment equation.  
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Example 2.20: A simply supported beam of span 10 m is subjected to two concentrated loads of 30 

kN and 40 kN at 2 m and 8 m from the left support, and a uniformly distributed load of 10 kN/m 

spanning over 5 m starting at 3 m from the left support. Determine the maximum slope and 

deflection. 

Solution:   

The simply supported beam with multiple loads is shown in Figure 2.26(i).  

 

Figure 2.26 Simply supported beam with multiple loads (Example 2.20) 

The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 30 10 5 40 0V V        

 
A B 120V V   

B 0M    
A

5
10 30 8 10 5 2 40 2 0

2
V

 
          

 
 

A 54.5V   kN  

B 65.5V   kN  

For getting a continuous function (due to the distributed load) in all segments while taking A as 

origin, the uniformly distributed load of 10 kN/m is added in the segment EB both in downward 

and upward directions as shown in Figure 2.26(ii). By taking A as origin, the moment of all the 

forces on the left of the section is 

   
 

   
 

       

A

2 2

3 8
30 2 10 3 40 8 10 8

2 2

54.5 30 2 5 3 40 8 5 8

x x
M V x x x x x

x x x x x

 
               

        

 

The expression is partitioned by dotted lines for different segments. The governing differential 

equation of the elastic curve is  

x 

B A 
C E 

40 kN 
10 kN/m 

30 kN 

D 

1 m 
2 m 2 m 5 m 

40 kN 
10 kN/m 

30 kN 

10 kN/m 

x 

(i)  Loads given 

(ii)  Loads considered 
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       
2

2 2

2
54.5 30 2 5 3 40 8 5 8

d
EI x x x x x

dx


           

The first and second integrations yield the expressions for slope and deflection respectively as  

       
2 3 2 32

1

2 3 8 8
54.5 30 5 40 5

2 2 3 2 3

x x x xd x
EI C

dx

   
             

       
3 4 3 43

1 2

2 3 8 8
 54.5 30 5 40 5

6 6 12 6 12

x x x xx
EI C x C

   
                

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

BC (i): At the roller support B, the value of deflection is zero, 0x   0   

BC (ii): At the hinged support A, the value of deflection is zero, 10x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3

1 2

(0)
 0 54.5 (0)

6
EI C C        

 
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 

   

   

3 43

1

3 4

10 2 10 310
54.5 (10) 0 30 5

6 6 12
0

10 8 10 8
40 5

6 12

C

EI

  
         
 


 

  
    
 

  

  
1 547.625C   

Therefore, the complete expressions for slope and deflection: 

   

   

2 32

2 3

27.25 547.625 15 2 1.667 31

20 8 1.667 8

x x xd

dx EI
x x

 
       
 
     

 (2.93) 

   

   

3 43

3 4

9.083 547.625 5 2 0.417 31
 

6.667 8 0.417 8

x x x x

EI
x x

 
       
 
     

 (2.94) 
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(iii) Maximum slope: 

The maximum slope in simply supported beam occurs at one of the support locations. 

 2

A

0

1 547.625
27.25 (0) 547.625

x

d

dx EI EI





       radians 

   

   

2 32

B
2 3

10

27.25 10 547.625 15 10 2 1.667 10 31

20 10 8 1.667 10 8x

d

dx EI




 
           
 
       

  

578.930

EI


 radians 

Therefore, the maximum slope is max

578.930

EI
   radians 

(iv) Maximum deflection: 

The maximum deflection in simply supported beam occurs where the direction of slope 

changes (i.e., 0d dx  ). Assume the direction of slope changes in the third segment (i.e., DE).  

   
2 321

27.25 547.625 15 2 1.667 3 0
d

x x x
dx EI

 
        

 
 

 3 21.667 27.25 15 562.625 0x x x      

 
1 15.526x  , 

2 5.091x   and 
3 4.270x    

Therefore, 5.091x   m is the admissible root. 

 

 

33

max 5.091
4

9.083 (5.091) 547.625 (5.091) 5 5.091 21
  

0.417 5.091 3
x EI

 
          
 
    

  

1745.090

EI
  m 

 

Example 2.21: An overhanging beam of span 10 m is subjected to multiple lateral loads as shown 

in Figure 2.27(i). Determine the maximum slope and the maximum deflection. 

Solution:  

For getting a continuous function (due to the distributed load) in all segments while taking A as 

origin, the uniformly distributed load of 10 kN/m is added between C and E both in downward and 

upward directions as shown in Figure 2.27(ii).   
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Figure 2.27 Overhanging beam with multiple loads (Example 2.21) 

The reactions at the supports are obtained by applying the equilibrium conditions as 

0yF    
A B 10 4 20 5 0V V        

 
A B 65V V   

A 0M     B5 10 8 20 5 10 4 4 2 0V           

Therefore, 
A 36.25V   kN and 

B 28.75V   kN.  

By taking A as origin, the moment of all the forces on the left of the section is 

 
 

   

     

A B

22

4
10 10 4 20 5 8

2 2

36.25 5 5 4 20 5 28.75 8

xx
M V x x x x V x

x x x x x


              

       

 

The expression is partitioned by dotted lines for different segments. The governing differential 

equation of the elastic curve is  

     
2

22

2
36.25 5 5 4 20 5 28.75 8

d
EI x x x x x

dx


          

The first and second integrations yield the expressions for slope and deflection respectively as  

     
3 2 22 3

1

4 5 8
36.25 5 5 20 28.75

2 3 3 2 2

x x xd x x
EI C

dx

  
             

     
4 3 33 4

1 2

4 5 8
 36.25 5 5 20 28.75

6 12 12 6 6

x x xx x
EI C x C

  
                

where 
1C  and 

2C  are the constants of integration, which need to be evaluated using the boundary 

conditions as follows. 

x 

B 
A 

C E 

5 kN 
10 kN/m 

20 kN 

D 

1 m 
2 m 4 m 3 m 

(i)  Loads given 

(ii)  Loads considered 

x 

5 kN 
10 kN/m 

20 kN 

10 kN/m 
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BC (i): At the hinged support A, the value of deflection is zero, 0x   0   

BC (ii): At the roller support B, the value of deflection is zero, 8x   0   

Since both the boundary conditions are corresponding to the deflection at two locations, only 

deflection equation should be used for evaluating the constants 
1C  and 

2C .  

By applying the first boundary condition; 

 
3 4

1 2

(0) (0)
 0 36.25 5 (0)

6 12
EI C C          

 
2 0 C   

By applying the second boundary condition and the substituting the value of 
2C ; 

 
     

4 3 33 4

1

8 4 8 5 8 8(8) (8)
0 36.25 5 (8) 0 5 20 28.75

6 12 12 6 6
EI C

  
               

 
1 175.417C   

Therefore, the complete expressions for slope and deflection: 

   

 

3 22 3

2

18.125 1.667 175.417 1.667 4 10 51

14.375 8

x x x xd

dx EI
x

 
        
 
   

 (2.95) 

   

 

4 33 4

3

6.042 0.417 175.417 0.417 4 3.333 51
 

4.792 8

x x x x x

EI
x

 
        
 
   

 (2.96) 

(i) Maximum slope: 

The maximum slope in overhanging beam occurs at either one of the support locations or at 

the free end of the overhang. 

 2 3

A

0

1 175.417
18.125 (0) 1.667 (0) 175.417

x

d

dx EI EI





         radians 

   
3 22 3

B

8

1
18.125 8 1.667 8 175.417 1.667 8 4 10 8 5

x

d

dx EI




 
             

 
  

147.767

EI


 radians 

 

   

32 3

B
2 210

18.125 10 1.667 10 175.417 1.667 10 4
1

10 10 5 14.375 10 8
x

d

dx EI




 
        

   
 
      
 
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137.655

EI


 radians 

Therefore, the maximum slope is 
max

175.417

EI
   radians 

(ii) Maximum deflection: 

The maximum deflection in overhanging beam occurs where the direction of slope changes 

(i.e., 0d dx  ) between the supports or at the free end.  

Assume the direction of slope changes in the first segment (i.e., AC).  

 2 31
18.125 1.667 175.417 0

d
x x

dx EI


      

 
3 21.667 18.125 175.417 0x x     

1 2.777x   , 
2 9.771x   and 

3 3.879x   

Therefore, 3.879x   m is the admissible solution. 

 3 4

3.879

1 422.205
6.042 (3.879) 0.417 (3.879) 175.417 (3.879)

x EI EI
          m 

     

3 4

E 10
4 3 3

6.042 (10) 0.417 (10) 175.417 (10)
1 279.973

0.417 10 4 3.333 10 5 4.792 10 8
x EI EI

 
      

     
 
         
 

 m 

Therefore, max

422.205
 

EI
   m 

The negative sign of 
E  indicates that the deflection is in the opposite direction (i.e., upwards). 

 

The standard formulas can also be used to determine the slope and deflection. This mainly helps in 

determining the maximum slope and the maximum deflection for cantilever beams subjected to 

multiple loads.  Consider a cantilever beam with two point loads 
1W  and 

2W  as shown in Figure 

2.28(i).  As already seen, the maximum slope and the maximum deflection occur at the free end 

(i.e., at B). Therefore, the values of slope and deflection at B can be obtained by superimposing the 

individual effects due to the point loads 
1W  and 

2W  at B.  

The deflected shape due to 
1W  is a nonlinear curve between A and B'  as shown in Figure 

2.28(ii). However, the deflected shape due to 
2W  is a nonlinear curve between A and C' , and a 

linear curve (i.e., inclined line)  between C'  and B' as shown in Figure 2.28(iii). Therefore, the 

slope and the deflection at B due to 
1W  can be determined directly using the respective formulas. 

However, the slope and the deflection at B due to 
2W  cannot be directly obtained as the formulas 

are not available.  
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Figure 2.28 Cantilever beam with multiple loads  

(i) Slope at B (
B ): 

The slope at B, 
1 2

B B B     

where, 
1

B  is the slope at B due to 
1W ; 

2
1 1
B

2

W L

EI
   

2

B  is the slope at B due to 
2W  which is equal to 

2

B  as the curve C'B'  is linear; 
2

2 2 2
B C

2

W a

EI
    

(ii) Deflection at B (
B ): 

The deflection at B, 
1 2

B B B      

where, 
1

B  is the deflection at B due to 
1W ; 

3
1 1
B

3

W L

EI
   

2

B  is the deflection at B due to 
2W ;  2 2 2

B C CBB'' + B'' B' L a       

  
3 2

2 2

3 2

W a W a
L a

EI EI
     

The sign of the slope formulas (i.e., negative) for cantilever beams is ignored in the above 

calculations to avoid confusion while obtaining the deflections. 

 
 

 

W2 

B A C 

W1 

a 

L 

W1 

A 
B 

B′ 

∆B
1  

W2 

C 
B 

B′′ 
∆B
2  

B′ 

C
2
 

C′ 

C
2
 

a La A 

∆C
2  

(ii)  Deflection due to W1 

(iii)  Deflection due to W2 

B
1

 

(i)  Beam with two loads 
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Example 2.22: A cantilever beam of span 6 m is subjected to three concentrated loads of 30 kN, 25 

kN and 20 kN respectively at 3 m, 5 m and 6 m from the fixed end as shown in Figure 2.29. 

Determine the slope and deflection at the free end. 

 

Figure 2.29 Cantilever beam with multiple loads (Example 2.22) 

Solution:   

The slope at D, 
20 25 30

D D D D       

Slope at D due to 20 kN; 

2
20

D

20 6 360

2EI EI



   

Slope at D due to 25 kN (equal to slope at C); 

2
25

D

25 5 312.5

2EI EI



   

Slope at D due to 30 kN (equal to slope at B); 

2
30

D

30 3 135

2EI EI



   

Therefore, the slope at D, D

360 312.5 135 807.5

EI EI EI EI
      radians 

The deflection at D, 
20 25 30

D D D D        

Deflection at D due to 20 kN; 

3
20

D

20 6 1440

3EI EI


    m 

Deflection at D due to 25 kN;  
3 2

25

D

25 5 25 5 1354.167
6 5

3 2EI EI EI

 
       m 

Deflection at D due to 30 kN;  
3 2

30

D

30 3 30 3 675
6 3

3 2EI EI EI

 
       m 

Therefore, the deflection at D, D

1440 1354.167 675 3469.167

EI EI EI EI
      m 

The above answers are same as the ones obtained using Macaulay’s method in Example 2.11. 

 
 

 

 

B 

30 kN 

A C 

25 kN 20 kN 

D 

3 m 2 m 1 m 
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Example 2.23: A cantilever beam of span 6 m is subjected to three loads as shown in Figure 2.30. 

Determine the slope and deflection at the free end. 

 

Figure 2.30 Cantilever beam with multiple loads (Example 2.23)  

Solution:  

The slope at D, 
25 20 10

D D D D       

Slope at D due to 25 kN; 

2
25

D

25 6 450

2EI EI



   

Slope at D due to 20 kN (equal to slope at C); 

2
20

D

20 5 250

2EI EI



   

Slope at D due to 10 kN/m (equal to slope at B); 

3
10

D

10 3 45

6EI EI



   (formula for UDL is used) 

Therefore, the slope at D, D

450 250 45 745

EI EI EI EI
      radians 

The deflection at D, 
25 20 10

D D D D        

Deflection at D due to 25 kN; 

3
25

D

25 6 1800

3EI EI


    m 

Deflection at D due to 20 kN;  
3 2

20

D

20 5 20 5 1083.333
6 5

3 2EI EI EI

 
       m 

Deflection at D due to 10 kN;  
4 3

10

D

10 3 10 3 236.25
6 3

8 6EI EI EI

 
       m (formula for UDL) 

Therefore, the deflection at D, D

1800 1083.333 236.25 3119.583

EI EI EI EI
      m 

The above answers are same as the ones obtained using Macaulay’s method in Example 2.12. 

 

 

 

 

B 
A 

10 kN/m 

C 

20 kN 25 kN 

D 

3 m 2 m 1 m 
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Example 2.24: A cantilever beam of span 9 m is subjected to a point load of 30 kN at the free end, 

and a uniformly distributed load of 20 kN/m over a span of 4 m starting at 2 m from the fixed end 

as shown in Figure 2.31(i). Determine the slope and deflection at the free end. 

Solution:  

As the standard formulas are not available for discontinuous uniformly distributed load, the load is 

assumed over the segment AB both in downward and upward directions as shown in Figure 2.31(ii).  

 

Figure 2.31 Cantilever beam with multiple loads (Example 2.24) 

The slope at D, 
upward30 20 20

D D D D       

Slope at D due to 30 kN; 

2
30

D

30 9 1215

2EI EI



   

Slope at D due to 20 kN/m (equal to slope at C); 

3
20

D

20 6 720

6EI EI



   

Slope at D due to 20 kN/m (upward) (equal to slope at B); 
upward

3
20

D

20 2 26.667

6EI EI



    

Therefore, the slope at D, D

1215 720 26.667 1908.333

EI EI EI EI
      radians 

The deflection at D, 
upward30 20 20

D D D D      

Deflection at D due to 30 kN; 

3
25

D

30 9 7290

3EI EI


    m 

Deflection at D due to 20 kN/m;  
4 3

20

D

20 6 20 6 5400
9 6

8 6EI EI EI

 
       m 

Deflection at D due to 20 kN/m (upward);  
upward

4 3
20

D

20 2 20 2 226.667
9 2

8 6EI EI EI

 
       m  

Therefore, the deflection at D, D

7290 5400 226.667 12463.333

EI EI EI EI
      m 

The above answers are same as the ones obtained using Macaulay’s method in Example 2.14. 

 

(i)  Loads given 

(ii)  Loads considered 

A 
C D B 

3 m 4 m 2 m 

20 kN/m 
30 kN 

20 kN/m 
30 kN 

20 kN/m 
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The formulas for slope and deflection in cantilever and simply supported beams for standard 

loads are presented in Table 2.3. 

Table 2.3 Formulas for slope and deflection 

Beam Slope Deflection 

 

A 0   

2

B
2

WL

EI



  

A 0   

3

B
3

WL

EI
   

 

A 0   

3

B
6

wL

EI



  

A 0   

4

B
8

wL

EI
   

 

A 0   

3

B
24

wL

EI


   

A 0   

4

B
30

wL

EI
   

 

A 0   

B

ML

EI


   

A 0   

2

B
2

ML

EI
   

 

2

A
16

WL

EI



  

2

B
16

WL

EI
   

A B 0     

3

C
48

WL

EI
   

 

3

A
24

wL

EI


   

3

B
24

wL

EI
   

A B 0     

4

C

5

384

wL

EI
   

 

3

Aθ
45

wL

EI


  

3

B

7
θ

360

wL

EI
  

A B 0     

4

C

5

768

wL

EI
   

4

max 0.006522
wL

EI
   (at 0.481L  from A) 

 

A
3

ML

EI


   

B
6

ML

EI
   

A B 0     

2

C
16

ML

EI
   

2

max 0.06415
ML

EI
   (at 0.423L  from A) 

 

W 

L A B 

w 

L A B 

w 

L A B 

M 

L A B 

W 

A B 
C 

𝐿 2Τ  𝐿 2Τ  

𝐿 2Τ  C 
A B 

w 

𝐿 2Τ  

A B 
C 

w 

𝐿 2Τ  𝐿 2Τ  

A B 
C 

M 

𝐿 2Τ  𝐿 2Τ  
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UNIT SUMMARY  

 When a structural member is subjected to lateral loads, slope is defined as the displacement 

in the rotational direction and the deflection is defined as the displacement in the linear 

direction. 

 Stiffness is defined as the force required to cause the displacement. 

 Governing differential equation of elastic curve when sagging moment is observed: 

2

2

d
EI M

dx


 

 

 The double integration method is effective when a continuous moment function throughout 

the length is possible. 

 The known conditions of slope and deflection (usually zero values) at the ends are called 

boundary conditions. 

 The maximum slope and deflection occur at the free end of cantilevers. 

 The maximum slope occurs at the supports, and the maximum deflection occurs at a point 

where the direction of slope changes in simply supported beams. 
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EXERCISES  

2.1. A cantilever beam of span 6 m is subjected to a point load of 20 kN at the tip, and a 

uniformly distributed load of 10 kN/m over a span of 4 m from the fixed end. Find the 

values of slope and deflection at the mid-span and free-end locations. Take the flexural 

rigidity as 6000 kNm2. 

2.2. A cantilever beam of span L is subjected to a uniformly varying load with w at the free end 

and zero at the fixed end. Derive the expressions for slope and deflection, and find the 

values of maximum slope and deflection. 

2.3. A cantilever beam of span 9 m is subjected to 30 kN loads at every 3 m span. Find the 

maximum deflection if the cross-section is 200×300 mm, and the modulus of elasticity is 

210×103 MPa. 

2.4. A cantilever beam of span 6 m is subjected to a uniformly distributed load of 20 kN/m 

(downwards) over the half-span from the fixed support. Determine the point load 

(upwards) required at the free end to nullify the deflection (at the free end) caused due to 

the load applied (i.e., 20 kN/m).  

2.5. Derive expressions for the slope and deflection of a cantilever beam subjected a triangular 

load (with zero intensity at the support and a peak value w at the free-end). Assume the 

beam to have a span L and a uniform flexural rigidity EI.  

2.6. A simply supported beam is subjected to point loads of W each at every one-third of the 

span. Determine the values of maximum slope and deflection. 

2.7. A simply supported beam if span 6 m is subjected to a uniformly distributed load of 25 

kN/m over the half-span from the left support. Derive the expression for the slope and 

deflection, and determine the maximum slope and deflection. 

2.8. Derive expressions for the slope and deflection of a simply supported beam subjected to a 

distributed gravity load of total magnitude W, having a triangular distribution (with zero 

intensity at the two supports and a peak value at the mid-span location). Assume the beam 

to have a span L and a uniform flexural rigidity EI.  

2.9. A simply supported beam of span 10 m is subjected to a clockwise moment of 50 kNm at 

the mid-span. Determine the values of maximum slope and deflection. 

2.10. A simply supported beam of span 8 m is subjected to a uniformly distributed load of 20 

kN/m over the entire span, and point loads of 5 kN each at every 2 m. Find the values of 

maximum slope and deflection.  
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QR Code for Slope and Deflection 

 

NPTEL Lecture: https://www.youtube.com/watch?v=q7G0RMtrKr8 
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UNIT SPECIFICS  

This unit discusses the following aspects. 

 Concept of fixity and its advantages 

 Force responses of fixed beams 

 Force responses of continuous beams 

RATIONALE  

In general, many civil engineering structures are statically indeterminate. Analysis of statically 

indeterminate structures require understanding of both the force and displacement responses of 

statically determinate structures which are already covered in the earlier chapters. This chapter 

presents the procedure for analyzing statically indeterminate structures such as fixed and 

continuous beams for force responses. 

UNIT OUTCOMES 

List of outcomes of this unit is as follows. 

U3-O1: Describe the concept of fixity 

U3-O2:  Describe the advantages of fixity 

U3-O3:  Describe the principles of superposition  

U3-O4: Analysis of fixed beams  

U3-O5:  Analysis of continuous beams  

Mapping of Unit-3 Outcomes with Course Outcomes * 

 CO-1 CO-2 CO-3 CO-4 CO-5 

U3-O1 1 1 3 2 1 

U3-O2 1 2 3 2 1 

U3-O3 1 1 3 2 1 

U3-O4 1 3 3 2 1 

U3-O5 1 3 3 2 1 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation)  

Fixed and Continuous Beams 3 
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3.1 Introduction 

Statically determinate structures (e.g., cantilever and simply supported beams) can be solved by 

applying statics equilibrium equations. However, the solution of statically indeterminate structures 

is not straightforward due to their redundant nature. Most civil engineering structures are statically 

indeterminate, and the force responses of such structures are the primary requirement for the design. 

Therefore, it is essential to understand both the force and displacement responses of statically 

determinate structures for analyzing statically indeterminate structures such as fixed and 

continuous beams. The concepts covered in Chapter 2 for determining the slope and deflection of 

statically determinate structures are readily applied in this chapter. 

3.2 Concept of Fixity 

Fixity is a condition of support in which all displacements are restrained. Consequently, reactions 

are developed in horizontal, vertical and rotational directions in a two-dimensional system. When 

the ends of a beam are fixed, more reactions are developed, and the beam becomes statically 

indeterminate. 

3.3 Fixed Beam 

If the two ends of a beam are supported by fixed supports, the beam is termed as fixed beam (also 

called built-in or encastered beam). It can be understood in two ways:  

(i) A cantilever beam has two degrees of freedom at the free end (axial deformation is ignored 

as it is not significant) namely rotation (i.e., slope) and the deflection. Therefore, a fixed 

beam can be visualized as a cantilever beam with the degrees of freedom at the free-end 

arrested. This means that the fixed beam typically has a degree of static indeterminacy 

equal to two (the vertical reaction and the moment reaction can be considered as redundant 

forces). Hence, two additional equations are required to solve the problem apart from the 

static equilibrium equations. 

(ii) A simply supported beam has two degrees of freedom (i.e., one rotation at each support). 

Therefore, a fixed beam can be visualized as a simply supported beam with the degrees of 

freedom at the supports arrested. Again, the degree of static indeterminacy is two (one 

moment reaction at each support can be considered as redundant forces). 

3.3.1 Advantages of Fixed Beam 

The advantages of fixed beam are 

(i) As the ends of beam are fixed, the stiffness of structure increases. Therefore, it deflects 

less compared to simply supported beams. 

(ii) As the moments are redistributed, the maximum moment decreases. Therefore, long-span 

structures can be constructed. 

(iii) As the moment variation along the length has both sagging and hogging nature, efficient 

utilization of reinforcement in concrete structures is possible wherever required.  

(iv) It is more stable and stronger. 
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3.3.2 Principle of Superposition 

When a linearly elastic structure is subjected to a number of loads, the resultant effect (i.e., force 

or displacement responses) is the algebraic sum of the effects produced by individual loads at a 

particular point. This principle is useful in solving complex structural analysis problems by 

superimposing the solutions of the decomposed simple problems. In a simpler sense, the statically 

indeterminate structures can be decomposed into a series of statically determinate structures for the 

purpose of performing the analysis. 

3.3.3 Analysis of Fixed Beam 

A fixed beam with arbitrary loading is shown in Figure 3.1. The free-body diagram of the beam 

shows that there are four reactions ( AV , BV , 
F

ABM  and 
F

BAM ), in which AV and BV  are the vertical 

reactions; 
F

ABM  and 
F

BAM  are the moment reactions (called fixed-end moments). As the degree of 

static indeterminacy is two, any two reactions can be considered as redundant forces so as to treat 

the beam as statically determinate. If BV  and 
F

BAM  are considered as redundant, then the beam is a 

cantilever beam with two redundant forces at B. If 
F

ABM  and 
F

BAM  are considered as redundant, 

then the beam is a simply supported beam with one redundant force for each support. 

 

Figure 3.1 Fixed beam with arbitrary loading 

3.3.4 Superposition of Cantilever Beam Effects 

A fixed beam can be visualized as a cantilever beam with the degrees of freedom at the free-end 

arrested. Therefore, the fixed beam with arbitrary loading can be decomposed into a cantilever 

beam with the given loading, and a cantilever beam with redundant forces 
1 B(R V  and 

F

2 BA )R M  

as loading at the free end (i.e., at B) as shown in Figure 3.2.  

In the original fixed structure, the slope and deflection are zero at B. Therefore, the algebraic 

sum of slope (at B) of (i) the cantilever beam subjected to given loading, and (ii) the cantilever 

beam subjected to the redundant forces as loading, is equal to zero. Similarly, the algebraic sum of 

deflection (at B) of (i) the cantilever beam subjected to given loading, and (ii) the cantilever beam 

subjected to the redundant forces as loading, is equal to zero. 

 

A B 

VA VB 

𝑀AB
F  𝑀BA

F  

Fixed beam with arbitrary loading 

Reactions and deflected shape 

W 
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B B 0L R    (3.1) 

B B 0L R     (3.2) 

where 

B

L  is the slope at B due to given load (i.e., in clockwise direction) 

B

L  is the deflection at B due to given load (i.e., in downward direction) 

B

R  is the slope at B due to 1R  and 2R  (i.e., in anti-clockwise direction) 

B

R  is the deflection at B due to 1R  and 2R  (i.e., in upward direction) 

 

Figure 3.2 Superposition of cantilever beam effects 

In Eq. (3.1) and Eq. (3.2), B

L  and B

L  can be readily obtained using the formulas (for standard 

loading cases). In the similar way, B

R  and B

R  can be written using the formulas as functions of  

1R  and 2R . Therefore, by solving Eq. (3.1) and Eq. (3.2), the values of 1R  and 2R  are obtained. 

Consider a fixed beam with mid-span point load as shown in Figure 3.3.  

 

Figure 3.3 Fixed beam with mid-span point load 
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F  
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𝑅
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VB 

𝑀BA
F  

ΔB
𝐿
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Since the supports at A and B are fixed, the values of slope and deflection are zero at both the 

support locations.  When the beam is considered as a cantilever beam (fixed at A, and free), the 

redundant forces at B as 1 BR V  (vertical force) and F

2 BAR M  (moment force) should be evaluated 

by applying the compatibility of displacements at B. 

B B B 0L R      (3.3) 

B B B 0L R       (3.4) 

where  

 
2 2

B C

2

2 8

L L
W L WL

EI EI
      

 B C C 2L L L L      

   
 

3 2 32 2 5
2

3 2 48

W L W L WL
L

EI EI EI
     

1 2

2

1 2
B B B

2

R RR R L R L

EI EI
  


     

1 2

3 2

1 2
B B B

3 2

R RR R L R L

EI EI


        

Therefore, Eq. (3.3) and Eq. (3.4) become; 

22

1 2 0
8 2

R L R LWL

EI EI EI

 
   
 

 (3.5) 

3 23

1 25
0

48 3 2

R L R LWL

EI EI EI

 
   
 

 (3.6) 

By solving Eq. (3.5) and Eq. (3.6); 

1
2

W
R    

2
8

WL
R   

After getting the values of 1R  and 2R , the force responses (i.e., shear force and bending moment 

diagrams) of the given fixed beam can be obtained by considering the beam as a cantilever beam 

with three loads: (i) given load (i.e., W  acting at the mid-span in downward direction), (ii) 1R  (i.e., 

2W  acting at B in upward direction), and (iii) 2R  (i.e., 8WL  acting at B in clockwise direction) 

as shown in Figure 3.4 (ii). 
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Now, free-body diagram of the cantilever is drawn with support reactions at A as AV  and AM  

as shown in Figure 3.4 (iii). By applying the equilibrium conditions; 

0yF    A 0
2

W
V W     

 A
2

W
V   

A 0M    A 0
2 8 2

W WL L
L W M       

 A
8

WL
M   

The obtained values of AV  and AM  are positive, which means the assumed directions of AV  

(i.e., upward) and AM  (i.e., anti-clockwise) are correct, and AM  is the fixed end moment at A (i.e., 
F

A ABM M ). 

Shear force diagram: 

A
2

W
S   kN 

left

C
2

W
S   kN 

right

C
2 2

W W
S W


    kN 

B
2

W
S


  kN 

Bending moment diagram: 

A
8

WL
M


  kNm 

C
8 2

A

WL L
M V


     

8 2 2 8

WL W L WL
     kNm  

B
8

WL
M


  kNm 

The values of AM  and BM  are considered negative as these moments cause hogging nature. The 

shear force and bending moment diagrams are shown in Figures 3.4 (iv) and 3.4 (v) respectively. 

 



Theory of Structures| 125 

 

 

Figure 3.4 Force responses of the fixed beam with mid-span point load 

3.3.5 Superposition of Simply Supported Beam Effects 

A fixed beam can be visualized as a simply supported beam with the degrees of freedom at the 

supports arrested. Therefore, the fixed beam with arbitrary loading can be decomposed into a 

simply supported beam with the given loading, and a simply supported beam with redundant forces 

( F

1 ABR M  and F

2 BAR M ) as loading at the supports as shown in Figure 3.5. 

In the original fixed structure, the values of slope at A and B are zero. Therefore, the algebraic 

sum of slope (at A) of (i) the simply supported beam subjected to given loading, and (ii) the simply 

supported beam subjected to the redundant forces as loading, is equal to zero. Similarly, the 

algebraic sum of slope (at B) of (i) the simply supported beam subjected to given loading, and (ii) 

the simply supported beam subjected to the redundant forces as loading, is equal to zero. 
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Figure 3.5 Superposition of simply supported beam effects 

A A 0L R    (3.7) 

B B 0L R    (3.8) 

where 

A

L  is the slope at A due to given load (i.e., in clockwise direction) 

B

L  is the slope at B due to given load (i.e., in anti-clockwise direction) 

A

R  is the slope at A due to 1R  and 2R  (i.e., in anti-clockwise direction) 

B

R  is the slope at B due to 1R  and 2R  (i.e., in clockwise direction) 

In Eq. (3.7) and Eq. (3.8), A

L  and B

L  can be readily obtained using the formulas (for standard 

loading cases). In the similar way, A

R  and B

R  can be written using the formulas as functions of  

1R  and 2R . Therefore, by solving Eq. (3.7) and Eq. (3.8), the values of 1R  and 2R  are obtained.  

Consider a fixed beam with mid-span point load as shown in Figure 3.6.  

 

 Figure 3.6 Fixed beam with mid-span point load 
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When the beam is considered as a simply supported beam, the redundant forces at A as F

1 ABR M  

(moment force), and at B as F

2 BAR M  (moment force) should be evaluated by applying the 

compatibility of displacements (i.e., the values of slope at A and B are zero). 

A A A 0L R      (3.9) 

B B B 0L R      (3.10) 

where  

2

A
16

L WL

EI



  

2

B
16

L WL

EI
    

1 2 1 2
A A A

3 6

R RR R L R L

EI EI
       

1 2 1 2
B B B

6 3

R RR R L R L

EI EI
  


     

Therefore, Eq. (3.3) and Eq. (3.4) become; 

2

1 2 0
16 3 6

R L R LWL

EI EI EI

  
   
 

 (3.11) 

2

1 2 0
16 6 3

R L R LWL

EI EI EI

 
   
 

 (3.12) 

By solving Eq. (3.11) and Eq. (3.12); 

1
8

WL
R   and 

2
8

WL
R   

After getting the values of 1R  and 2R , the force responses (i.e., shear force and bending moment 

diagrams) of the given fixed beam can be obtained by considering the beam as a simply supported 

beam with three loads: (i) given load (i.e., W  acting at the mid-span in downward direction), (ii) 

1R  (i.e., 8WL  acting at A in anti-clockwise direction), and (iii) 
2R  (i.e., 8WL  acting at B in 

clockwise direction) as shown in Figure 3.7 (ii). 

Now, free-body diagram of the simply supported beam is drawn with support reactions at A as 

AV  and at B as 
BV  as shown in Figure 3.7 (iii). By applying the equilibrium conditions; 

0yF    
A B 0V W V     

A 0M    B 0
8 2 8

WL L WL
V L W        

 
B 2V W ,  and  

A 2V W . 

The obtained values of 
AV  and 

BV  are positive, which means the assumed directions (i.e., upward) 

are correct.  
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Shear force diagram: 
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W
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Figure 3.7 Force responses of the fixed beam with mid-span point load 
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Bending moment diagram: 

A
8

WL
M


  kNm 

C
8 2

A

WL L
M V


     

8 2 2 8

WL W L WL
     kNm 

B
8

WL
M


  kNm 

The values of 
AM  and 

BM  are considered negative as these moments cause hogging nature. The 

shear force and bending moment diagrams are same as shown in Figures 3.7 (iv) and 3.7 (v) 

respectively. 

Even though the same results are obtained in Figures 3.4 and 3.7, considering the simply 

supported beam is more convenient for drawing the bending moment diagram. Because, the final 

bending moment diagram is directly obtained by the superimposition as shown in Figure 3.8. 

Therefore, if the fixed end moments are known for standard load cases, then the fixed beams can 

be easily analysed for the force responses. 

 

Figure 3.8 Bending moment diagram by superposition 

3.3.6 Fixed End Moments 

When a fixed beam is treated as a simply supported beam with moment reactions at the supports as 

two redundant forces, the primary objective is to obtain the values of these redundant forces. These 

moment reactions are called fixed end moments.   

Case-1: A fixed beam with mid-span point load 

From Section 3.6.2, 

F

AB
8

WL
M   (anti-clockwise) 

F

BA
8

WL
M   (clockwise) 

 

+ 

WL/8 

WL/8 WL/8 
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WL/4 + 
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  
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Case-2: A fixed beam with a point load at a distance “a” from the left support 

Let a fixed beam be subjected to a point load at a distance of “ a ” from A, and “ b ” from B, so that 

L a b  . The beam is considered as a simply supported beam with the support moments as the 

redundant forces F

1 ABR M , and F

2 BAR M  respectively at A and B as shown in Figure 3.9.   

 

 Figure 3.9 Fixed beam with a point load 

Applying the conditions of slope at A and B,   

A A A 0L R      (3.13) 

B B B 0L R      (3.14) 

where  

 A 2
6

L Wab
a b

EIL



   

 B 2
6

L Wab
a b

EIL
     

1 2 1 2
A A A

3 6

R RR R L R L

EI EI
       

1 2 1 2
B B B

6 3

R RR R L R L

EI EI
  


     

Therefore, Eq. (3.13) and Eq. (3.14) become; 

  1 22 0
6 3 6

R L R LWab
a b

EIL EI EI

  
    

 
 (3.15) 

  1 22 0
6 6 3

R L R LWab
a b

EIL EI EI

 
    

 
 (3.16) 

 

 

A B 
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𝑀BA
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By solving Eq. (3.15) and Eq. (3.16); 
2

1 2

Wab
R

L
   

2

2 2

Wa b
R

L
  

Therefore, 
2

F

AB 2

Wab
M

L
  (anti-clockwise) 

2
F

BA 2

Wa b
M

L
  (clockwise) 

When more than one load is applied, the fixed end moments can be obtained by superposition of 

the individual fixed end moments. For example, a fixed beam AB of span “L” is subjected to two 

point loads: 1W  is acting at a distance of 1a  from A (which means 1b  from B); and 2W  is acting at 

a distance of 2a  from A (which means 2b  from B), so that 
1 1 2 2L a b a b    . The fixed end 

moments are  
2 2

F 1 1 1 2 2 2
AB 2 2

W a b W a b
M

L L
   (anti-clockwise) 

2 2
F 1 1 1 2 2 2
BA 2 2

W a b W a b
M

L L
   (clockwise) 

Case-3: A fixed beam with uniformly distributed load over the entire length 

Let a fixed beam be subjected to a uniformly distributed load over the entire length. Similar to the 

previous case, the beam is considered as a simply supported beam with the support moments as the 

redundant forces ( F

1 ABR M  at A, and F

2 BAR M  at B).  

Applying the conditions of slope at A and B,   

A A A 0L R      (3.17) 

B B B 0L R      (3.18) 

where  
3

A
24

L wL

EI



  

3

B
24

L wL

EI
    

1 2 1 2
A A A

3 6

R RR R L R L

EI EI
       

1 2 1 2
B B B

6 3

R RR R L R L

EI EI
  


     
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Therefore, Eq. (3.17) and Eq. (3.18) become; 

3

1 2 0
24 3 6

R L R LwL

EI EI EI

  
   
 

 (3.19) 

3

1 2 0
24 6 3

R L R LwL

EI EI EI

 
   
 

 (3.20) 

By solving Eq. (3.19) and Eq. (3.20); 

2

1
12

wL
R    

2

2
12

wL
R   

Therefore, 
2

F

AB
12

wL
M   (anti-clockwise) 

2
F

BA
12

wL
M   (clockwise) 

The formulas for finding the fixed end moments for standard load cases are given in Table 3.1. 

When the beam is subjected to multiple loads, the fixed end moments due to individual loads can 

be superposed to obtain the resultant end moments. The fixed end moments at the left support are 

considered negative because the direction is anti-clockwise, while the end moment at the right 

support is positive (clockwise). Therefore, for general gravity loading cases, when the end moments 

(mostly hogging) are superposed with the moments of simply supported beam (mostly sagging), 

the sign convention should be strictly followed.  

A simple sign convention procedure is presented in Figure 3.10(i). Whether the end moments 

are drawn below or above the baseline is decided based on the sign (positive or negative) of the 

end moments. All four possibilities of end moment combinations and their respective bending 

moments are shown in Figures 3.10(ii)3.10(v). For example, when 
ABM  (i.e., F

ABM ) is negative 

(i.e., anti-clockwise) and 
BAM  (i.e., F

BAM ) is positive (i.e., clockwise), the bending moment 

diagram is drawn above the base line. Because, throughout the length, AB is in hogging nature. On 

the other hand, when both ends are positive (or negative), the bending moment diagrams will be on 

both sides of the baseline, because both sagging and hogging nature will be there in the beam. 
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Table 3.1 Formulas for fixed end moments 

Beam FEM at A FEM at B 

 

F

AB
8

WL
M


  

F

BA
8

WL
M   

 

2
F

AB 2

Wab
M

L


  

2
F

BA 2

Wa b
M

L
  

 

2
F

AB
12

wL
M


  

2
F

BA
12

wL
M   

 

F 2

AB

11

192
M wL


  

F 2

BA

5

192
M wL  

 

2
F

AB
20

wL
M


  

2
F

BA
30

wL
M   

 

F 2

AB

5

96
M wL


  

F 2

BA

5

96
M wL  

 

 

Figure 3.10 Nature of end moments and bending moment diagrams 
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3.3.7 Numerical Examples 

Example 3.1: A fixed beam of span 6 m is subjected to a point load of 90 kN at 2 m from the left 

end. Draw the shear force and bending moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.11(i). The beam is considered as the combination of a 

simply supported beam with the given loading as shown in Figure 3.11(ii), and a simply supported 

beam with fixed end moments at the supports as shown in Figure 3.11(iii) 

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B90 0V V     

A 0M    L

B 6 90 2 0V       

L

B 30V   kN 
L

A 60V   kN 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading.  

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C B 4 30 4 120M V      kNm 

The fixed end moments using the standard formulas: 
2 2

F

AB 2 2

90 2 4
80

6

Wab
M

L

   
     kNm 

2 2
F

BA 2 2

90 2 4
40

6

Wa b
M

L

 
     kNm 

The bending moment diagrams for the fixed end moments and the free moments (i.e., due to given 

loading) are shown in Figures 3.11(iv) and 3.11(v) respectively. The final bending moment diagram 

can be obtained by superposing the free moment diagram with the fixed end moment diagram.  The 

support reactions induced by the fixed end moments are obtained separately. Let the vertical 

reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 40 80 0V       

F

B 6.67V    kN  
F

A 6.67V   kN 
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Since the value of F

BV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction  of F

AV  is correct . Therefore,  F

AV  is upwards and F

BV  is downwards as corrected in the 

free-body diagram shown in Figure 3.11(vi).  

 

Figure 3.11 Solution for Example 3.1 
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From Figures 3.11(vi) and 3.11(vii), the values of shear force at various locations are obtained. 

A A 60 6.67 66.67S V     kN 

left

C 66.67S   kN 

right

C 66.67 90 23.33S      kN 

B 23.33S    kN 

The shear force diagram is shown in Figure 3.11(viii), and the final bending moment diagram 

obtained by superposing the fixed and free bending moment diagrams is shown in 3.11(ix).   

Therefore, the net bending moment at C,  

C (60 6.67) 2 80 53.33M       kNm. 

In Figure 3.11(ix), the value of bending moment is zero at D and E, which are shown as internal 

hinges in Figure 3.11(x). This means, when the bending moment varies from A (i.e., 80 kNm) to 

C (i.e., +53.33 kNm), the moment is zero at D.  

Similarly, when the bending moment varies from C (i.e., +53.33 kNm) to B (i.e., 40 kNm), 

the moment is zero at E. Therefore, the points D and E are the points of contraflexure.  

A point of contraflexure is a point where the curvature of the beam changes its sign. The 

location of points of contraflexure can be obtained by equating the moment equation to zero. 

Location of D: Let the point D be at a distance of 
1x  from A. By taking moment of all forces 

on the left of D, 

D 0M    

 
1(60 6.67) 80 0x      

1 1.2x   m 

Location of E: Let the point E be at a distance of 
2x  from A. By taking moment of all forces 

on the left of E, 

E 0M   

 
2 2(60 6.67) 80 90 ( 2) 0x x         

2 4.286x   m 

Theoretically, the points of contraflexure act as internal hinges within the beam. These internal 

hinges reduce the degree of static indeterminacy by the same number. This means, with two internal 

hinges, this statically indeterminate fixed beam reduces to a statically determinate beam (i.e., 

DSI=22=0). Hence, the reduced statically determinate beam can be solved by applying static 

equilibrium equations alone. 

Therefore, when the locations of zero-moment along the span are known, the given fixed beam 

can be considered as the combination of a simply supported beam between internal hinges (i.e., 

zero-moment locations), and two cantilever beams at the ends. The force responses (e.g., bending 

moment diagram) can be obtained as shown in Figure 3.12. 
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First, the mid-portion (i.e., simply supported beam) is analysed using the static equilibrium 

equations as shown in Figure 3.12(iii). The upward reactions at D and E obtained from the mid-

portion, act as the loads at the ends of the cantilevers in the downward direction. Again, the 

cantilevers are analysed for the force responses as shown in Figure 3.12(iv). The final bending 

moment diagram is obtained by combining the diagrams of mid-portion and end-portions as shown 

in Figure 3.12(v). 

 

Figure 3.12 Solution for Example 3.1 
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Example 3.2: A fixed beam of span 6 m is subjected to two point loads of 30 kN and 50 kN at 2 m 

and 5 m respectively from the left end. Draw the shear force and bending moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.13(i). The beam is considered as the combination of a 

simply supported beam with the given loading as shown in Figure 3.13(ii), and a simply supported 

beam with fixed end moments at the supports as shown in Figure 3.13(iii).   

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B30 50 0   V V   

A 0M    L

B 6 50 5 30 2 0     V   

L

B 51.67V  kN 

L

A 28.33V  kN 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading. 

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A 2 28.33 2 56.66    M V  kNm 

L L

D B 1 51.67 1 51.67    M V  kNm 

Using the standard formulas, the fixed end moments are obtained by combining the moments due 

to individual loads. 
2 2

F 1 1 1 2 2 2
AB 2 2

W a b W a b
M

L L
     

2 2

2 2

30 2 4 50 5 1
33.61

6 6

   
      kNm 

2 2
F 1 1 1 2 2 2
BA 2 2

W a b W a b
M

L L
    

2 2

2 2

30 2 4 50 5 1
48.05

6 6

   
     kNm 

The bending moment diagrams for the free moments (i.e., due to given loading) and the fixed end 

moments are shown in Figures 3.13(iv) and 3.13(v) respectively. The final bending moment 

diagram can be obtained by superposing the free moment diagram with the fixed end moment 

diagram.  
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The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 48.05 33.61 0   V   

F

B 2.41V   kN 

F

A 2.41V    kN 

Since the value of F

AV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of F

BV  is correct. Therefore,  F

AV  is downwards and F

BV  is upwards as corrected in the 

free-body diagram shown in Figure 3.13(vi). 

Therefore, from Figures 3.13(vi) and 3.13(vii), the values of shear force at various locations 

are obtained as 

A A 28.33 2.41 25.92S V     kN 

left

C 25.92S  kN 

right

C 25.92 30 4.08S      kN 

left

D 4.08S    

right

D 4.08 50 54.08S       

B 54.08S    kN 

The shear force diagram is shown in Figure 3.13(viii) and the final bending moment diagram is 

obtained by superposing the fixed and free bending moment diagrams as shown in Figure 3.13(ix).  

The net bending moments at C and D are positive (i.e., sagging) which are obtained as follows. 

Net moment at C,  
C 25.92 2 33.61 18.23M      kNm 

Net moment at D,  
D 25.92 5 33.61 30 3 6.0M        kNm 
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Figure 3.13 Solution for Example 3.2 
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Example 3.3: A fixed beam of span 6 m is subjected to three point loads of 40 kN, 50 kN and 30 

kN at 2 m, 3 m and 5 m respectively from the left end. Draw the shear force and bending moment 

diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.14(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports.  

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B40 50 30 0    V V   

A 0M    L

B 6 30 5 50 3 40 2 0       V  

 L

B 63.33V   kN 
L

A 56.67V   kN 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading.  

The moments due to the given loading for simply supported beam: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A 2 56.67 2 113.34M V      kNm 

L L

D A 2 56.67 3 40 1 130.0M V        kNm 

L L

E B 1 63.33 1 63.33M V      kNm 

The fixed end moments using the standard formulas: 
2 2 2

F

AB 2 2 2

40 2 4 50 3 3 30 5 1
77.22

6 6 6
M

     
       kNm 

2 2 2
F

BA 2 2 2

40 2 4 50 3 3 30 5 1
76.11

6 6 6
M

     
      kNm 

The bending moment diagrams for the free moments (i.e., due to given loading) and the fixed end 

moments are shown in Figures 3.14(ii) and 3.14(iii) respectively. The final bending moment 

diagram can be obtained by superposing the free moment diagram with the fixed end moment 

diagram.  

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 77.22 76.11 0   V   

 F

B 0.19V    kN and F

A 0.19V   kN. 
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Since the value of F

BV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of F

AV  is correct. Therefore,  F

AV  is upwards and F

BV  is downwards. Therefore, the values 

of shear force at various locations are obtained as 

A A 56.67 0.19 56.86S V     kN 
left

C 56.86S   kN 
right

C 56.86 40 16.86S     kN 
left

D 16.86S   kN 
right

D 16.86 50 33.14S      kN 
left

E 33.14S    kN 
right

E 33.14 30 63.14S       kN 

B 63.14S    kN 

The shear force and bending moment diagram are shown in Figures 3.14(iv) and 3.14(v) 

respectively. 

 

Figure 3.14 Solution for Example 3.3 

(i) Fixed beam with given loading 

A B 

40 kN 

C 

30 kN 

D 

50 kN 

E 

2 m 2 m 1 m 1 m 

76.11 kNm  

 

77.22  

(iii) Bending moment diagram for end moments (ii) Free bending moment diagram  

113.34  

63.33 kNm  

+ 

130.0  

(iv) Shear force diagram 

56.85 

63.14 kN 

+ 

 
33.15 

16.85 

(v) Bending moment diagram 

  

+ 

77.22 76.11 kNm  

36.5 53.36

12.92
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Net moment at C,  
C 56.86 2 77.22 36.5M      kNm 

Net moment at D,  
D 56.86 3 77.22 40 1 53.36M        kNm 

Net moment at D,  
D 56.86 5 77.22 40 3 50 2 12.92M           kNm 

 

Example 3.4: A fixed beam of span 6 m is subjected to a uniformly distributed load of 10 kN/m 

throughout the length, and a point load of 25 kN at 4 m from the left end. Draw the shear force and 

bending moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.15(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports.  

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B10 6 25 0    V V   

A 0M    L

B 6 25 4 10 6 6 2 0V          

 L

B 46.67V  kN, and L

A 38.33V  kN. 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading.  

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A 4 10 4 4 2 38.33 4 10 4 2 73.32M V            kNm 

The fixed end moments using the standard formulas: 
2 2 2 2 2

F

AB 2 2 2

10 6 25 4 2 30 5 1
41.11

12 12 6 6

     
       

wL Wab
M

L
 kNm 

2 2 2 2
F

BA 2 2

10 6 25 4 2
52.22

12 12 6

  
      

wL Wa b
M

L
 kNm 

The bending moment diagrams for the free moments (i.e., due to given loading) and the fixed end 

moments are shown in Figures 3.15(ii) and 3.15(iii) respectively. The final bending moment 

diagram can be obtained by superposing the free moment diagram with the fixed end moment 

diagram.  

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 52.22 41.11 0   V   
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 F

B 1.85V  kN and F

A 1.85 V  kN. 

Since the value of F

AV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of F

BV  is correct. Therefore,  F

AV  is downwards and F

BV  is upwards. Therefore, the values 

of shear force at various locations are obtained as 

A A 38.33 1.85 36.48   S V  kN 
left

C 36.48 10 4 3.52    S  kN 
right

C 3.52 25 28.52    S  Kn 

B 28.52 10 2 48.52     S  kN 

The shear force and bending moment diagrams are shown in Figures 3.15(iv) and 3.15(v) 

respectively.  

Net moment at C,  
C 36.48 4 41.11 10 4 4 2 24.81M         kNm. 

 

Figure 3.15 Solution for Example 3.4 

 

(ii) Free bending moment diagram  

73.32 kNm  

+ 

52.22 kNm  

 

41.11  

(iii) Bending moment diagram for end moments 

(iv) Shear force diagram 

36.48 kN 

48.52 kN 

+ 

 
3.52 

28.52 

(i) Fixed beam with given loading 

A B C 
4 m 2 m 

25 kN 10 kN/m 

(v) Bending moment diagram 

+ 

 

 

41.11 52.22 kNm  

24.81
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Example 3.5: A fixed beam of span 6 m is subjected to two-point loads of 20 kN and 30 kN 

respectively at 1 m and 3 m from the left end, and a uniformly distributed load of 10 kN/m over the 

entire span. Draw the shear force and bending moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.16(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports.  The vertical reactions for the simply supported beam with the given 

loading are obtained by applying the equilibrium equations. 

0yF    L L

A B20 30 10 6 0     V V   

A 0M    L

B 6 10 6 6 2 30 3 20 1 0V            

 L

B 48.33V  kN, and L

A 61.67V  kN. 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading. 

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A 1 10 1 1 2 61.67 1 10 1 1 2 56.67M V            kNm 

L L

D A 3 10 3 3 2 20 2 61.67 1 10 3 3 2 20 2 100.0M V                kNm 

The fixed end moments using the standard formulas: 
2 2 2

F

AB 2 2

10 6 20 1 5 30 3 3
66.39

12 6 6
M

    
       kNm 

2 2 2
F

BA 2 2

10 6 20 1 5 30 3 3
55.28

12 6 6
M

    
      kNm 

The bending moment diagrams for the free moments (i.e., due to given loading) and the fixed end 

moments are shown in Figures 3.16(ii) and 3.16(iii) respectively. The final bending moment 

diagram can be obtained by superposing the free moment diagram with the fixed end moment 

diagram.  

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 66.39 55.28 0V       

 F

B 1.85V    kN and F

A 1.85V   kN. 

Since the value of F

BV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of F

AV  is correct. Therefore,  F

AV  is upwards and F

BV  is downwards.  
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The values of shear force at various locations are obtained as 

A A 61.67 1.85 63.52S V     kN 
left

C 63.52 10 1 53.52S      kN 
right

C 53.52 20 33.52S     kN 
left

D 33.52 10 2 13.52S      kN 
right

D 13.52 30 16.48S      kN 

B 16.48 10 3 46.48S        kN 

The shear force and bending moment diagrams are shown in Figures 3.16(iv) and 3.16(v) 

respectively.  

Net moment at C,  
C 63.52 1 66.39 10 1 1 2 7.87M          kNm 

Net moment at D,  
D 63.52 3 66.39 20 2 10 3 3 2 39.17M           kNm 

 

Figure 3.16 Solution for Example 3.5 

 
 

 

55.28 kNm  

 

66.39  

(iii) Bending moment diagram for end moments 

(i) Fixed beam with given loading 

30 kN 10 kN/m 20 kN 

A B C 
2 m 3 m 

D 
1 m 

(ii) Free bending moment diagram  

56.67  

+ 

100.0 kNm  

(v) Bending moment diagram 

66.39 55.28 kNm  

7.87

39.17

+ 

 
 

(iv) Shear force diagram 

 

63.52 

+ 

46.48 kN 

53.52 
33.52 

13.52 

16.48 
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Example 3.6: A fixed beam of span 6 m is subjected to the concentrated loads of 15 kN, 25 kN and 

5 kN respectively at 1 m, 2 m and 3 m from the left end. The beam is also subjected to a uniformly 

distributed load of 10 kN/m over a span of 3 m from right end. Draw the shear force and bending 

moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.17(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports.  

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B15 25 5 10 3 0      V V   

A 0M     L

B 6 10 3 3 1.5 5 3 25 2 15 1 0V               

 L

B 35.83V  kN, and L

A 39.17V   kN. 

where L

AV  and L

BV  are the vertical reactions at A and B respectively due to the given loading. 

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A 1 39.17 1 39.17M V      kNm 

L L

D A 2 15 39.17 2 15 1 63.33M V         kNm 

L L

E A 3 15 2 25 1 39.17 3 15 2 25 1 62.51M V              kNm 

The fixed end moments using the standard formulas: 
2 2 2 2

F

AB 2 2 2

15 1 5 25 2 4 5 3 3 5 10 6
45.76

6 6 6 192
M

       
        kNm 

2 2 2 2
F

BA 2 2 2

15 1 5 25 2 4 5 3 3 11 10 6
37.57

6 6 6 192
M

       
      kNm 

The bending moment diagrams for the free moments (i.e., due to given loading) and the fixed end 

moments are shown in Figures 3.17(ii) and 3.17(iii) respectively. The final bending moment 

diagram can be obtained by superposing the free moment diagram with the fixed end moment 

diagram.  

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions F

AV  and F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    F F

A B 0V V    

A 0M    F

B 6 45.76 37.57 0V       

 F

B 1.37V    kN and F

A 1.37V   kN. 
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Since the value of F

BV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of F

AV  is correct. Therefore,  F

AV  is upwards and F

BV  is downwards. Therefore, considering 

the reactions due to given loads and end moments, the values of shear force at various locations are 

obtained as 

A A 39.17 1.37 40.54S V     kN 
left

C 40.54S   kN 
right

C 40.54 15 25.54S     kN 
left

D 25.54S   kN 
right

D 25.54 25 0.54S     kN 
left

E 0.54S   kN 
right

E 0.54 5 4.46S      kN 

B 4.46 10 3 34.46S        kN 

The shear force and bending moment diagrams are shown in Figures 3.17(iv) and 3.17(v) 

respectively.  

 

Figure 3.17 Solution for Example 3.6 

(i) Fixed beam with given loading 

5 kN 10 kN/m 15 kN 25 kN 

A B C D E 
1 m 3 m 1 m 1 m 

37.57 kNm  

 

45.76  

(iii) Bending moment diagram for end moments (ii) Free bending moment diagram  

+ 

39.17  

63.33  
62.51 kNm  

(iv) Shear force diagram 

40.54 

+ 

25.54 

34.46 kN 

 

0.54 

4.46 

(v) Bending moment diagram 

+ 

 
 

20.32 
5.22

20.86

37.57 kNm  
45.76 
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Net moment at C,  
C 40.54 1 45.76 5.22M       kNm 

Net moment at D,  
D 40.54 2 45.76 15 1 20.32M        kNm 

Net moment at E,  
E 40.54 3 45.76 15 2 25 1 20.86M          kNm 

 

Example 3.7: A fixed beam of span 6 m is subjected to a uniformly varying load with the intensities 

of zero at the left end and 30 kN/m at the right end. Draw the shear force and bending moment 

diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.18(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports.   

The vertical reactions for the simply supported beam with the given loading are obtained by 

applying the equilibrium equations. 

0yF    L L

A B

1
6 30 0

2
V V       

A 0M    L

B

1 2
6 6 30 6 0

2 3
V

  
       

  
  

 
L

B 60V  kN, and 
L

A 30V  kN. 

where 
L

AV  and 
L

BV  are the vertical reactions at A and B respectively due to the given loading. 

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A

1 1
3 3 15 3

2 3
M V

 
       

 
  

1 1
30 3 3 15 3 67.5

2 3

 
        

 
kNm 

where, 
L

CM  is the moment at the mid-span. 

The fixed end moments using the standard formulas: 
2 2

F

AB

30 6
36.0

30 30

wL
M


       kNm 

2 2
F

BA

30 6
54.0

20 20

wL
M


     kNm 

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions 
F

AV  and 
F

BV  be due to end moments, and assumed to be acting in upward direction. 
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0yF    
F F

A B 0V V    

A 0M    
F

B 6 36 54 0   V   

 
F

B 3V  kN and 
F

A 3 V  kN. 

Since the value of 
F

AV  is negative, the assumed direction (i.e., upwards) is not correct, but the 

direction of 
F

BV  is correct. Therefore,  
F

AV  is downwards and 
F

BV  is upwards. Therefore, considering 

the reactions due to given loads and end moments, the values of shear force at various locations are 

obtained as 

A A 30 3 27   S V  kN 

left

C

1
27 3 15 4.5

2
S       kN 

right

C 4.5S   kN 

B

1
27 6 30 63.0

2
S        kN 

The shear force and bending moment diagrams are shown in Figures 3.18(ii) and 3.18(iii) 

respectively.  

Net moment at C: 

C

1 1
27.0 3 36.0 15 3 3 22.5

2 3
M

 
         

 
 kNm 

 

Figure 3.18 Solution for Example 3.7 

 

(i) Fixed beam with given loading 

30 kN/m 

A B 
6 m 
C 

(ii) Shear force diagram 
63.0 kN 

27.0  

 

+ 

36.0  

 

+ 

54.0 kNm 

22.5  

 

(iii) Bending moment diagram 
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Example 3.8: A fixed beam of span 6 m is subjected to a triangular load with the intensities of zero 

at the supports and 30 kN/m at the mid-span. Draw the shear force and bending moment diagrams. 

Solution:  

The fixed beam AB is shown in Figure 3.19(i). The beam is considered as the combination of a 

simply supported beam with the given loading, and a simply supported beam with fixed end 

moments at the supports. The vertical reactions for the simply supported beam with the given 

loading are obtained by applying the equilibrium equations. 

0yF    L L

A B

1
30 6 0

2
    V V   

A 0M    L

B

1 6
6 6 30 0

2 2
V         

L

B 45V  kN 
L

A 45V  kN 

where 
L

AV  and 
L

BV  are the vertical reactions at A and B respectively due to the given loading. 

Therefore, the moments due to the given loading: 
L

A 0M   kNm 

L

B 0M   kNm 

L L

C A

1 1
3 3 30 3

2 3
M V

 
       

 
  

1 1
45 3 3 30 3 90.0

2 3

 
        

 
kNm 

where, 
L

CM  is the moment at the mid-span. 

The fixed end moments using the standard formulas: 
2 2

F

AB

5 5 30 6
56.25

96 96

 
     

wL
M  kNm 

2 2
F

BA

5 5 30 6
56.25

96 96

 
  

wL
M  kNm 

The support reactions induced by the fixed end moments are obtained separately. Let the 

vertical reactions 
F

AV  and 
F

BV  be due to end moments, and assumed to be acting in upward direction. 

0yF    
F F

A B 0V V    

A 0M    
F

B 6 56.25 56.25 0   V   

F

B 0V  kN 
F

A 0V  kN 
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Since the fixed end moments at both supports are equal and opposite, no support reaction is 

induced.  

Therefore, the values of shear force at various locations are obtained as 

A A 45 S V  kN 

left

C

1
45 30 3 0

2
    S  kN 

right

C 0S  kN 

B

1
0 30 3 45

2
     S  kN 

The shear force and bending moment diagrams are shown in Figures 3.19(ii) and 3.19(iii) 

respectively.  

The net moment at C is, C 90.0 56.25 33.75M     kNm 

 

Figure 3.19 Solution for Example 3.8 

 
 

 

 

 

 

 

 

(i) Fixed beam with given loading 

30 kN/m 

A B 
6 m 
C 

(ii) Shear force diagram (in kN) 

+ 

45.0  

45.0 

 

33.75 

+ 

56.25 

 

56.25 

 

(iii) Bending moment diagram (in kNm) 
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3.4 Continuous Beam 

When a beam has more than two supports, the beam is called a continuous beam. The reactions in 

the supports of a continuous beam cannot be directly obtained with the equations of static 

equilibrium only, hence the continuous beams are statically indeterminate. 

In order to visualize the effects due to different levels of fixity (i.e., degree of fixity), consider 

a beam AB subjected a mid-span point load W as shown in Figure 3.20(i), in which, the supports 

A and B are not restrained against rotation (i.e., free to rotate), hence the moment at B is zero. 

Therefore, the slope at B is 
2

B 16WL EI  , which is taken as   for reference.  If the support B is 

fixed (i.e., restrained completely) as shown in Figure 3.20(ii), the value of 
B  is reduced to zero, 

hence the moment developed at B is 
B 3 16M WL . When the beam is continued over the support 

B as shown in Figure 3.20(iii), the value of 
B  lies between   and zero, hence the moment 

developed at B lies between zero and 3 16WL . As the elastic curve is continuous over the support 

B, the tangent drawn to the elastic curve at B forms 
left right

B B B    . Therefore, the intermediate 

support at B cannot be treated as “simply supported” unlike the simple support at the ends, and the 

adjoining span BC offers restraint to the rotation at B partially. That is why, the value of slope 

decreases, and the moment increases at B from the original simply supported condition. The amount 

of reduction/increase depends on the stiffness of the adjoining span. This means, when the stiffness 

is equal to zero, the behaviour is similar to Figure 3.20(i); and when the stiffness is equal to infinity, 

the behaviour is similar to Figure 3.20(ii).    

 

Figure 3.20 Behaviour of a continuous beam 
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3.4.1 Two-span Continuous Beam 

When a beam has three supports, the beam is called a two-span continuous beam. Depending on 

the extreme end support conditions, different types of two-span continuous beam can be obtained 

as shown in Figure 3.21. The degree of static indeterminacy (DSI) varies from one to three, and the 

overhanging portions in Figures 3.21(iv)3.21(vi) are not considered as separate spans of the 

continuous beam. This means that the value of m  remains two for determining the DSI using 

2DSI m r j   . However, the loads on these overhangs contribute to the shear and moment at 

the support to which the overhang portion is attached. Thus, once the contribution of these loads to 

the supports are taken into account, the overhanging portions can be suppressed conceptually for 

the purpose of determining the redundant forces.  

 

Figure 3.21 Two-span continuous beams 
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L1 L2 

L1 L2 
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3.4.2 Theorem of Three Moments 

Consider a two-span segment ABC of a continuous beam subjected to an arbitrary loading as shown 

in Figure 3.22. In span AB, the member end moments are 
ABM  and 

BAM . Similarly, 
BCM  and 

CBM  are the end moments in span BC. These moments are hogging in nature for normal gravity 

loading. The rotations at A, B and C may be either clockwise or anti-clockwise depending on the 

relative stiffness and loads. The spans AB and BC can be separated by considering the rotational 

springs at the ends to accommodate the stiffness of the adjacent spans. The rotation 
BA is the slope 

at B in the isolated span AB, which can be expressed in terms of the applied loading and end 

moments. Similarly, the rotation 
BC is the slope at B in the isolated span BC.  

 

Figure 3.22 Two-span segment of a continuous beam  

If each span has a uniform cross-section throughout its length, by applying the compatibility 

condition (i.e., 
BA BC  ), an equation relating the three unknown moments (

AB AM M , 

BA BC BM M M  , and  
CB CM M ) can be established as 

1 1 2 2 1 1 2 2
A B C

1 1 2 2 1 1 2 2

6 6
2

L L L L A x A x
M M M

I I I I I L I L

       
            

       
 (3.21) 

where  

A B C,  ,  M M M   member end moments 

1L  and 
2L   lengths of span AB and span BC 

1I  and 
2 I   moments of inertia of span AB and span BC  

1A  and 
2A   areas of bending moment diagram (i.e., isolated simply supported beams AB 

and BC) 

1x  and 
2x   centroids of bending moment diagram from A and C respectively 

Eq. (3.21) is known as the three-moment equation, and since it was proposed by Clapeyron in 

1857, this method is called Clapeyron’s Theorem of Three Moments. This can be directly applied 

to solve two-span continuous beams with a single degree of static indeterminacy. For higher 

indeterminacy problems, independent three-moment equation should be established for every two 

adjacent spans. If all the spans have the same cross-section, Eq. (3.21) can be simplified as 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 (3.22) 

L1 L2 

A B C 

A B 

MAB MBA 

C B 

MBC MCB 

(i) Two-span segment 

(ii) Separated span AB (iii) Separated span BC 
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Case 1: Continuous beam with simply supported ends  

Consider a two-span continuous beam with simply supported ends subjected to arbitrary loading as 

shown in Figure 3.23(i).  

 

Figure 3.23 Continuous beam with simply supported ends 

The values of bending moments at the end supports are either zero or known (i.e., if concentrated 

moment is applied at the ends or load is applied on the overhang, then the moment can be known). 

Since the DSI is one, Eq. (3.21) can be directly applied to solve for 
BM , which is the only unknown.  

   1 1 2 2 1 1 2 2
B

1 1 2 2 1 1 2 2

6 6
0 2 0

L L L L A x A x
M

I I I I I L I L

       
               
       

  

 
1 2 1 1 2 2

B

1 2 1 1 2 2

6 6
2

L L A x A x
M

I I I L I L

   
      

   
  

BM  can be obtained 

The same concepts can be extended to a three-span continuous beam ABCD, with simply 

supported ends at A and D. In this case, the DSI is two. The moments
A 0M  ,

D 0M  , 
BM  and 

CM  are the two unknown moments. Eq. (3.21) should be applied twice; by considering adjoining 

spans AB and BC first, and then BC and CD; thereby getting two equations which can be solved 

simultaneously to find the redundants 
BM  and 

CM . In a similar manner, if a continuous beam has 

n  spans (with extreme ends simply supported), Eq. (3.21) can be applied ( 1)n  times for solving 

the redundant moments (i.e., 1DSI n  ) associated with the intermediate support locations.  

Case 2: Continuous beam with fixed ends  

Consider a two-span continuous beam with one extreme end fixed and other extreme end simply 

supported as shown in Figure 3.24(i). As the DSI is two, when Eq. (3.21) is applied for the two 

spans AB and BC, two unknowns will exist (
AM  and 

BM ); hence they cannot be solved directly. 

Therefore, as shown in Figure 3.24(ii), assume an imaginary span A′A extending beyond the end 

A with simple supports both at A′ and A in such a way that the span A′A offers infinite flexural 

stiffness to restrain the rotation at A. Infinite flexural stiffness (i.e., 
0 0EI L ) can be achieved by 

either having infinite flexural rigidity (i.e., 
0EI   ) or an infinitely small span (i.e., 

0 0L  ). It is 

convenient to choose the latter as it can be easily incorporated in Eq. (3.21). Therefore, the beam 

L2 L1 

A B C 

(i) Continuous beam 

(ii) Span AB and its BMD 

A B 

𝑥1ഥ  
L1 

C.G. A1 

(iii) Span BC and its BMD 

C B 

𝑥2തതത 
L2 

C.G. A2 
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becomes a three-span continuous beam, where Eq. (3.21) can be independently applied to two “two-

span continuous beams” A′AB and ABC. As there is no loading on span A′A, the area of BMD is 

zero (i.e., 
0 0A  ). 

 

Figure 3.24 Continuous beam with a fixed support at one end 

For A′AB: 

0 0 0 01 1 1 1
A' A B

0 0 1 1 0 0 1 1

6 6
2

L L A xL L A x
M M M

I I I I I L I L

      
           

      
  

 
01 1 1 1

A' A B

0 0 1 1 0 0 1 1

6 (0) 60 0
2

xL L A x
M M M

I I I I I L I L

        
           

      
  

 
1 1 1 1

A B

1 1 1 1

6
2

L L A x
M M

I I I L

     
       

     
 (3.23) 

For ABC: 

1 1 2 2 1 1 2 2
A B C

1 1 2 2 1 1 2 2

6 6
2

L L L L A x A x
M M M

I I I I I L I L

       
            

       
 

  1 1 2 2 1 1 2 2
A B

1 1 2 2 1 1 2 2

6 6
2 0

L L L L A x A x
M M

I I I I I L I L

       
            

       
  

 
1 1 2 1 1 2 2

A B

1 1 2 1 1 2 2

6 6
2

L L L A x A x
M M

I I I I L I L

     
         

     
 (3.24) 

By solving Eq. (3.23) and Eq. (3.24),  the two unknown moments,
AM  and 

BM  can be obtained.  

If the right extreme end is also fixed, then the DSI  becomes three; hence all three moments 

AM , 
BM  and 

CM  are the unknowns. Similar to an imaginary span A′A on the left end, an 

imaginary span CC′ on the right end should also be assumed. Therefore, the beam becomes a four-

span continuous beam, where Eq. (3.21) can be independently applied to three “two-span 

continuous beams” A′AB, ABC and BCC′. As there is no loading on span A′A and CC′, the 

corresponding areas of BMD are zero. The resulting three simultaneous equations can be solved to 

obtain the unknown moments 
AM , 

BM  and 
CM . 

 

(i) Continuous beam with fixed support 

L2 L1 

A B C 
A′ 

L0 

L1 L2 

A 
B C 

(ii) Continuous beam with imaginary extended span 
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3.4.3 Numerical Examples 

Example 3.9: A continuous beam ABC is supported at A, B and C. The length of span AB is 6 m 

and span BC is 4 m. A concentrated load of 50 kN is acting at the mid-span of AB, and a uniformly 

distributed load of 20 kN/m is acting over the entire span of BC. Draw the shear force and bending 

moment diagrams. Assume a constant flexural rigidity throughout the beam. 

Solution:  

The continuous beam ABC is shown in Figure 3.25(i). The degree of static indeterminacy is 

one, as the extreme ends are simply supported, the corresponding moments are zero (i.e., 
A 0M   

and 
C 0M  ). The bending moment diagrams of the spans considered independently as simply 

supported beams are shown in Figure 3.25(ii). As the flexural rigidity is constant for the entire 

beam (i.e., 
1 2I I I  ), the three-moment equation for ABC is 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,   

A 0M  ; 
C 0M  ; 

1 6L   m; 
2 4L   m  

Area of BMD in span AB, 
1

1
6 75 225.0

2
A      kNm2 

Area of BMD in span BC, 
2

2
4 40 106.667

3
A      kNm2 

Centroid of 
1A  from A, 

1 6 2 3.0x    m (i.e., the shape is symmetrical) 

Centroid of 
2A  from A, 

2 4 2 2.0x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three-moment equation, 

       B

6 225.0 3 6 106.667 2
0 6 2 6 4 0 4

6 4
M

    
        

 
 

 
B20 995M      

B 49.75M    kNm 

The moment 
BM  is hogging in nature; this typically means that the moment is clockwise at B for 

the span AB, and anti-clockwise at B for the span BC as represented in the free-body diagram 

shown in Figure 3.25(iii).  

The maximum negative moment occurs at B (i.e., 49.75 kNm). However, the maximum 

positive moment may occur either in span AB or BC where the shear force changes its sign. 

Accordingly, in span AB, the shear force changes from positive to negative at D, where the value 

of moment is  

1max A 3 16.71 3 50.13M V       kNm 

In span BC, let x  be the distance from C, where shear force is zero. 

20 27.56 0x     1.378x   m 

2max C 1.378 20 1.378 1.378 2M V        

27.56 1.378 20 1.378 1.378 2 18.99      kNm 



Theory of Structures| 159 

 

Therefore, the maximum positive moment is 50.13 kNm. 

The bending moment diagram drawn explicitly with horizontal straight base line is shown in 

Figure 3.25(vi). Both the bending moment diagrams represented in Figures 3.25(v) and 3.25(vi) 

are same, however, the only difference lies in the reference line. 

 

Figure 3.25 Continuous beam with simply supported ends (Example 3.9) 
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Example 3.10: A two-span continuous beam ABC (span AB is 4 m and span BC is 8 m) has the 

extreme ends simply supported. The span AB is subjected to two concentrated loads of 30 kN and 

60 kN acting at 1 m and 2 m from A. The span BC is subjected to three concentrated loads of 25 

kN, 30 kN and 15 kN respectively at 2 m, 4 m and 6 m from B. Draw the shear force and bending 

moment diagrams. Assume a constant flexural rigidity throughout the beam. 

Solution:  

The continuous beam ABC is shown in Figure 3.26(i). The degree of static indeterminacy is 

one, as the extreme ends are simply supported, the corresponding moments are zero (i.e., A 0M   

and C 0M  ). The bending moment diagrams of the spans considered independently as simply 

supported beams are shown in Figure 3.26(ii). As the flexural rigidity is constant for the entire 

beam (i.e., 1 2I I I  ), the three-moment equation for ABC is 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

A 0M  ; C 0M   

1 4L  m; 2 8L  m  

The bending moment diagram in span AB is split into four parts in order to determine the area and 

centroid.  

1 1 2 3 4A a a a a      

 
1 1 1

1 52.5 1 52.5 1 (75.0 52.5) 2 75.0
2 2 2

     
                
     

 

26.25 52.5 11.25 75.0 165.0      kNm2 

The centroid of 
1A  is determined from point A as  

1 1 2 2 3 3 4 4
1

1 2 3 4

a x a x a x a x
x

a a a a

  


  
 

       26.25 (2 3 1) 52.5 (1 1 2) 11.25 (1 2 3 1) 75.0 (2 1 3 2)

26.25 52.5 11.25 75.0

            


  
 

1.91  m 

Similarly, the bending moment diagram in span BC is split into six parts in order to determine the 

area and centroid.  

2 5 6 7 8 9 10A a a a a a a        

   
1 1

2 65.0 2 65.0 2 (100.0 65.0) + 2 75.0
2 2

1 1
2 (100.0 75.0) 2 75.0

2 2

   
            
   

   
         
   

 

65.0 130.0 35.0 150.0 25.0 75.0 480.0        kNm2 
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The centroid of 
2A  is determined from point C as  

5 5 6 6 7 7 8 8 9 9 10 10
2

5 6 7 8 9 10

a x a x a x a x a x a x
x

a a a a a a

    


    
 

     

     

65.0 (2 3 2) 130.0 (2 2 2) 35.0 (2 2 3 2)

150.0 (4 2 2) 25.0 (4 1 3 2) 75.0 (6 1 3 2)

65.0 130.0 35.0 150.0 25.0 75.0

         
 
            


    

  

4.08  m 

Substituting the values of 
1A , 

2A , 
1x  and 

2x  in the three-moment equation, 

      B

6 165.0 1.91 6 480.0 4.08
0 4 2 4 8 0 8

4 8
M

    
          

 
 

B24 1941.53M     

 B 80.9M    kNm 

The moment BM  is hogging in nature; this typically means that the moment is clockwise at B for 

the span AB, and anti-clockwise at B for the span BC. Therefore, the vertical reactions are obtained 

by applying equilibrium conditions. 

Span AB:  

0yF    
1A B 30 60 0V V      

A 0M    
1B 4 80.9 60 2 30 1 0V          

 
1B 57.7V   kN and A 32.3V   kN. 

Span BC:  

0yF    
2B C 25 30 15 0    V V   

C 0M    
2B 8 80.9 25 6 30 4 15 2 0V            

 
2B 47.6V   kN and C 22.4V   kN. 

The shear force and bending moment diagrams are shown in Figures 3.26(iii) and 3.26(iv) 

respectively.  

Maximum negative moment B 80.9M   kNm 

Maximum positive moment G 59.5M   kNm 

The bending moment diagram drawn explicitly with horizontal straight base line is shown in Figure 

3.26(v). Both the diagrams represented in Figures 3.26(iv) and 3.26(v) are same, however, the only 

difference lies in the reference line. 
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Figure 3.26 Continuous beam with simply supported ends (Example 3.10) 
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59.5 44.8 

 

+ + 

(v) Bending moment diagram (in kNm) 
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Example 3.11: A two-span continuous beam ABC (span AB is 6 m and span BC is 4 m) has the 

extreme end A fixed while the end C is hinged. The span AB is subjected to a uniformly distributed 

load of 10 kN/m over the entire span. The span BC is subjected to a concentrated load of 30 kN 

acting at 3 m from C. Draw the shear force and bending moment diagrams. Assume a constant 

flexural rigidity throughout the beam. 

Solution:  

The continuous beam ABC is shown in Figure 3.27(i). The degree of static indeterminacy is 

two. Since the extreme end A is fixed, assume an imaginary span A′A extending beyond the end A 

with simple supports both at A′ and A with a span 0 0L  as shown in Figure 3.27(ii). The bending 

moment diagrams of the spans considered independently as simply supported beams are shown in 

Figure 3.27(iii). As the flexural rigidity is constant for the entire beam (i.e., 1 2I I I  ), the three-

moment equations for A′AB and ABC are written separately. 

For A′AB: 

  0 0 1 1
A' 0 A 0 1 B 1

0 1

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

A' 0M  ; 0 0L  m; 1 6L   

Area of BMD in span A′A, 0 0A   kNm2 

Centroid of 0A  from A′, 0 0x   m 

Area of BMD in span AB, 
1

2
6 45 180

3
   A  kNm2 

Centroid of 1A  from B, 1 6 2 3.0x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for A′AB, 

      A B

6 180 3
0 0 2 0 6 6 0

6
M M

  
        

 
 

A B12 6 540  M M  (3.25) 

For ABC: 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

C 0M  ; 1 6L  m; 2 4L  m  

Area of BMD in span AB, 
1

2
6 45 180

3
   A  kNm2 

Centroid of 1A  from A, 1 6 2 3.0x    m (i.e., the shape is symmetrical) 

Area of BMD in span BC, 
2

1
4 22.5 45.0

2
A      kNm2 
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Centroid of 2A  from C, 
2

1 (2 3)
2.33

3
x

 
   m  

Substituting the above values in the three moment-equation for ABC, 

       A B

6 180.0 3 6 45.0 2.33
6 2 6 4 0 4

6 4
M M

    
       

 
 

A B6 20 697.28M M    (3.26) 

Solving Eqs. (3.25) and (3.26), 

A 32.43M    kNm and B 25.13M    kNm 

The moments 
AM and BM  are hogging in nature; this typically means that 

AM  is anti-clockwise 

at A, and BM  is clockwise at B for the span AB; and BM  is anti-clockwise at B for the span BC.  

Therefore, the vertical reactions are obtained by applying equilibrium conditions. 

Span AB:  

0yF    
1A B 10 6 0   V V   

0 AM   
1B 6 25.13 10 6 6 2 32.43 0V         

  
1B 28.78V   kN and A 31.22V   kN. 

Span BC:  

0yF    
2B C 30 0  V V   

C 0M    
2B 4 25.13 30 3 0V        

 
2B 28.78V   kN and C 1.22V   kN. 

The shear force and bending moment diagrams are shown in Figures 3.27(iv) and 3.27(v) 

respectively. The maximum negative moment occurs at A (i.e., 32.43 kNm). However, the 

maximum positive moment occurs either in span AB or BC, where the shear force changes its sign. 

Accordingly, in span AB, let x  be the distance from A, where shear force is zero. 

10 32.43 0x     3.24x   m 

1max A 3.24 32.43 10 3.24 3.24 2M V         

31.22 3.24 32.43 10 3.24 3.24 2 16.23       kNm 

In span BC, the shear force changes from positive to negative at D. 

2max C 3 1.22 3 3.66M V       kNm 

Therefore, the maximum positive moment is 16.23 kNm. 
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Figure 3.27 Continuous beam with a fixed end (Example 3.11) 

 

Example 3.12: A two-span continuous beam ABC (span AB is 5 m and span BC is 3 m) has the 

extreme end A hinged while the end C is fixed. The span AB is subjected to two concentrated loads 

of 10 kN each acting at 1m, and 4 m from A. The span BC is subjected to a mid-span point load of 

30 kN. Draw the shear force and bending moment diagrams. Assume a constant flexural rigidity 

throughout the beam. 

Solution:  

The continuous beam ABC is shown in Figure 3.28(i). The degree of static indeterminacy is 

two. Since the extreme end C is fixed, assume an imaginary span CC′ extending beyond the end C 

with simple supports both at C and C′ with a span 3 0L   as shown in Figure 3.28(ii).  

(i) Continuous beam with fixed end at A 

30 kN 10 kN/m 

6 m 

3 m 

4 m 

A B 

C 
D 

A B 

C 
D 

30 kN 10 kN/m 

6 m 

3 m 

4 m L0 

A′ 

(ii) Continuous beam with imaginary extended span A′A 

(iii) Free moment diagrams of separated spans 

45.0 kNm 

22.5 kNm 

A′ A B C 

1 
2 

(v) Bending moment diagram 

32.43 
25.13 

 
 

+ 

16.23 

3.66 kNm 

(iv) Shear force diagram 

31.22 

28.78 

28.78 

1.22 kN  
 

+ + 
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The bending moment diagrams of the spans considered independently as simply supported 

beams are shown in Figure 3.28(iii). As the flexural rigidity is constant for the entire beam (i.e., 

1 2I I I  ), the three-moment equations for ABC and BCC′ are written separately. 

For ABC: 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

A 0M  ; 1 5L   m; 2 3L   m  

Area of BMD in span AB, 
1

5 3
10.0 40.0

2
A


    kNm2 

Centroid of 1A  from A, 1 5 2 2.5x    m (i.e., the shape is symmetrical) 

Area of BMD in span BC, 
2

1
3 22.5 33.75

2
A      kNm2 

Centroid of 2A  from C, 
2

3
1.5

2
x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for ABC, 

       B C

6 40.0 2.5 6 33.75 1.5
0 5 2 5 3 3

5 3
M M

    
       

 
 

B C16 3 221.25M M    (3.27) 

For BCC′: 

  3 32 2
B 2 C 2 3 C' 3

2 3

66
2

A xA x
M L M L L M L

L L

 
      

 
 

where,  

C' 0M  ; 2 3L   m; 3 0L  ; 3 0A  ; 3 0x   

Area of BMD in span BC, 2 33.75A   kNm2 

Centroid of 2A  from B, 
2

3
1.5

2
x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for BCC′, 

       B C

6 33.75 1.5
3 2 3 0 0 0 0

3
M M

  
       

 
 

B C3 6 101.25M M    (3.28) 

Solving Eqs. (3.25) and (3.26), 

B 11.77M    kNm and C 10.99M    kNm 

The moments BM and CM  are hogging in nature; this typically means that BM  is clockwise at B 

for the span AB; and BM  is anti-clockwise at B and CM  is clockwise at C for the span BC.  
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Therefore, the vertical reactions are obtained by applying equilibrium conditions. 

Span AB:  

0yF    
1A B 10 10 0   V V   

0 AM   
1B 5 11.77 10 4 10 1 0V          

 
1B 12.35V   kN and A 7.65V   kN. 

 

Figure 3.28 Continuous beam with a fixed end (Example 3.12) 

 

 

Span BC:  

0yF    
2B C 30 0  V V   

(i) Continuous beam with fixed end at C 

30 kN 10 kN 10 kN 

5 m 

1.5 m 

3 m 

3 m 1 m 

A 

C 

F 

B 

D E 

(ii) Continuous beam with imaginary extended span CC′ 

30 kN 10 kN 10 kN 

A 
C 

F 

B 

D E 

L3 

C′ 

5 m 

1.5 m 

3 m 

3 m 1 m 

(iii) Free moment diagrams of separated spans 

1 
2 

C′ A B C 

10.0 kNm 

22.5 kNm 

10.0 kNm 

(iv) Shear force diagram 

 
 

+ 

+ 

7.65 

12.35 

15.26 

14.74 kN 

2.35 

(v) Bending moment diagram 

  

+ 

+ 

11.77 

10.99 kNm 

7.65 

11.12 
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C 0M    
2B 3 11.77 30 1.5 10.99 0V         

 
2B 15.26V   kN and C 14.74V   kN. 

The shear force and bending moment diagrams are shown in Figures 3.28(iv) and 3.28(v) 

respectively. 

Net positive moment at D, D 7.65 1.0 7.65M     kNm 

Net positive moment at F, F 14.74 1.5 10.99 11.12M      kNm 

 

Example 3.13: A two-span continuous beam ABC (span AB is 3 m and span BC is 5 m) has the 

extreme ends A and C fixed. The span AB is subjected to a uniformly distributed load of 20 kN/m 

over the entire span. The span BC is subjected to a point load of 30 kN at 3 m from the right end. 

Draw the shear force and bending moment diagrams. Assume a constant flexural rigidity 

throughout the beam. 

Solution:  

The continuous beam ABC is shown in Figure 3.29(i). The degree of static indeterminacy is 

three. Since the both extreme ends are fixed, assume the imaginary spans AA′ (i.e., 
0 0L  ) to the 

left of A and CC′ (i.e., 3 0L  ) to the right of C as shown in Figure 3.29(ii). The bending moment 

diagrams of the spans considered independently as simply supported beams are shown in Figure 

3.29(iii). As the flexural rigidity is constant for the entire beam (i.e., 1 2I I I  ), the three-moment 

equations for A′AB, ABC and BCC′ are written separately. 

For A′AB: 

  0 0 1 1
A' 0 A 0 1 B 1

0 1

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

A' 0M  ; 0 0L  m; 0 0A  ; 0 0x  ; 1 6L  m  

Area of BMD in span AB, 
1

2
3 22.5 45

3
   A  kNm2 

Centroid of 1A  from B, 1 3 2 1.5x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for A′AB, 

      A B

6 45.0 1.5
0 0 2 0 3 3 0

3
M M

  
        

 
 

A B6 3 135.0M M    (3.29) 
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For ABC: 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

1 3L   m; 2 5L   m  

Area of BMD in span AB, 
1 45.0A   kNm2 

Centroid of 1A  from A, 1 3 2 1.5x    m (i.e., the shape is symmetrical) 

Area of BMD in span BC, 
2

1
5 36.0 90.0

2
A      kNm2 

Centroid of 2A  from C, 
2

3 5
2.67

3
x


   m  

Substituting the above values in the three moment-equation for ABC, 

       A B C

6 45.0 1.5 6 90.0 2.67
3 2 3 5 5

3 5
M M M

    
       

 
 

A B C3 16 5 423.36M M M     (3.30) 

For BCC′: 

  3 32 2
B 2 C 2 3 C' 3

2 3

66
2

A xA x
M L M L L M L

L L

 
      

 
 

where,  

2 5L   m; 3 0L  ; 
C' 0M  ; 3 0A  ; 3 0x   

Area of BMD in span BC, 2 90.0A   kNm2 

Centroid of 2A  from B, 
2

2 5
2.33

3
x


   m  

Even though the free moment diagram in BC is used the two-span segments ABC and BCC′, the 

appropriate values of centroid should be used. The centroid 
2 2.33x  m is calculated from B for 

the two-span segment BCC′, while the centroid 
2 2.67x  m already calculated was from C for the 

two-span segment ABC. 

Substituting the above values in the three moment-equation for BCC′, 

       B C

6 90 2.33
5 2 5 0 0 0 0

5
M M

  
       

 
 

B C5 10 251.64M M    (3.31) 

Solving Eqs. (3.29)(3.31) 

A 12.92M    kNm 

B 19.17M    kNm 

C 15.58M    kNm 
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The moments 
AM , BM and CM  are hogging in nature; this typically means that the moment 

AM is 

anti-clockwise at A, and the moment BM  is clockwise at B for the span AB; and the moment BM  

is anti-clockwise at B, and the moment CM  is clockwise at C for the span BC. Therefore, the 

vertical reactions are obtained by applying equilibrium conditions. 

 

Figure 3.29 Continuous beam with fixed ends (Example 3.13) 

Span AB:  

0yF    
1A B 20 3 0   V V   

0 AM   
1B 3 19.17 20 3 3 2 12.92 0V          

(i) Continuous beam with extreme ends fixed 

27.92 

32.08 

18.72 

11.28 kN 
 

 

+ + 

(iv) Shear force diagram 

(ii) Continuous beam with imaginary extended span A′A 

A C 

D B 

3 m 

3 m 

5 m 

30 kN 20 kN/m 

L0 

A′ 

L3 

C′ 

30 kN 20 kN/m 

3 m 

3 m 

5 m 

A 
B C D 

(iii) Free moment diagrams of separated spans 

22.5 kNm 

36.0 kNm 

A′ A B C C′ 

1 2 

(v) Bending moment diagram 

19.17 
12.92 

15.58 kNm 

 
 

+ 

18.26 
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 
1B 32.08V   kN and A 27.92V   kN. 

Span BC:  

0yF    
2B C 30 0  V V   

C 0M    
2B 5 19.17 30 3 15.58 0V         

 
2B 18.72V   kN and C 11.28V   kN. 

The shear force and bending moment diagrams are shown in Figures 3.29(iv) and 3.29(v) 

respectively. The maximum negative moment occurs at B (i.e., 19.17 kNm). However, the 

maximum positive moment occurs either in span AB or BC, where the shear force changes its sign. 

Accordingly, in span AB, let x  be the distance from A, where shear force is zero. 

27.92 20 0x    1.40x   m 

1max A 1.4 12.92 20 1.4 1.4 2M V         

27.92 1.4 12.92 20 1.4 1.4 2 6.57        kNm 

In span BC, the shear force changes from positive to negative at D. 

2max C 3 11.28 3 15.58 18.26M V        kNm 

Therefore, the maximum positive moment is 18.26 kNm. 

 

Example 3.14: A continuous beam ABCD (span AB is 5 m; span BC is 4 m; span CD is 1 m) has 

the extreme end A fixed and extreme end D is free (i.e., CD is overhanging). The span AB is 

subjected to a point load of 30 kN at 2 m from A, the span BC is subjected to a mid-span point load 

of 20 kN, and the span CD is subjected to a point load of 10 kN at the tip. Draw the shear force and 

bending moment diagrams. Assume a constant flexural rigidity throughout the beam. 

Solution:  

The continuous beam ABCD is shown in Figure 3.30(i). The degree of static indeterminacy is two. 

Since the extreme end A is fixed, assume an imaginary span A′A extending beyond the end A with 

simple supports both at A′ and A with a span 0 0L  as shown in Figure 3.30(ii).  

The bending moment diagrams of the spans considered independently as simply supported 

beams are shown in Figure 3.30(iii). The value of moment at C is directly obtained from the 

overhanging portion CD. As the flexural rigidity is constant for the entire beam (i.e., 1 2I I I  ), 

the three-moment equations for A′AB and ABC are written separately. 

For A′AB: 

  0 0 1 1
A' 0 A 0 1 B 1

0 1

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

A' 0M   

0 0L  m; 0 0A  ; 0 0x  ; 1 5L   m 
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Area of BMD in span AB, 
1

1
5 36 90.0

2
A      kNm2 

Centroid of 1A  from B, 
1

3 5
2.67

3
x


   m  

 

Substituting the above values in the three moment-equation for A′AB, 

      A B

6 90.0 2.67
0 0 2 0 5 5 0

5
M M

  
        

 
 

A B10 5 288.36M M    (3.32) 

For ABC: 

  1 1 2 2
A 1 B 1 2 C 2

1 2

6 6
2

A x A x
M L M L L M L

L L

 
      

 
 

where,  

1 5L   m; 2 4L  m  

C 10 1 10.0M       kNm (due to the load on overhanging portion) 

Area of BMD in span AB, 
1 90.0A   kNm2 

Centroid of 1A  from A, 
1

2 5
2.33

3
x


   m  

Area of BMD in span BC, 
2

1
4 20.0 40.0

2
A      kNm2 

Centroid of 2A  from C, 
2

4.0
2.0

2
x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for ABC, 

      A B

6 90.0 2.33 6 40.0 2.0
5 2 5 4 10 4

5 4
M M

    
         

 
 

A B5 18 331.64M M    (3.33) 

Solving Eqs. (3.32) and (3.33), 

A 22.79M    kNm 

B 12.09M    kNm 

The moments 
AM , BM and CM  are hogging in nature; this typically means that the moment 

AM is 

anti-clockwise at A, and the moment BM  is clockwise at B for the span AB; the moment BM  is 

anti-clockwise at B, and the moment CM  is clockwise at C for the span BC; and the moment CM

is anti-clockwise at C for the span CD. Therefore, the vertical reactions are obtained by applying 

equilibrium conditions. 
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Figure 3.30 Continuous beam with an overhang (Example 3.14) 

Span AB:  

0yF    
1A B 30 0  V V   

A 0M    
1B 5 12.09 30 2 22.79 0V         

 
1B 9.86V   kN and A 20.14V   kN. 

Span BC:  

0yF    
2 1B C 20 0V V     

C 0M    
2B 4 12.09 20 2 10.0 0V         

 
2B 10.52V   kN and 

1C 9.48V   kN. 

Span CD:  

0yF    
2C 10 0V     

(iii) Free moment diagrams of separated spans 

A′ A B C 

36.0 kNm 

20.0 kNm 

1 
2 

(i) Continuous beam with fixed end at A and overhanging at the right end 

2 m 

5 m 4 m 1 m 

2 m 

30 kN 10 kN 30 kN 

A B 

C 

D E F 

(ii) Continuous beam with imaginary extended span A′A 

L0 

A′ 2 m 

5 m 4 m 1 m 

2 m 

30 kN 10 kN 30 kN 

A B 

C 

D E F 

(iv) Shear force diagram 

 

+ 
+ 

 

+ 

9.86 

20.14 

10.52 

9.48 

10.0 kN 

(v) Bending moment diagram 

 

 
 

+ 

+ 

22.79 

17.49 

10.0 kNm 12.09 8.96 
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 
2C 10.0V   kN 

The shear force and bending moment diagrams are shown in Figures 3.30(iv) and 3.30(v) 

respectively. The net moments at E and F are 17.49 kNm and 8.96 kNm respectively. 

 

Example 3.15: A continuous beam ABCDE (span AB is 4 m with AB 2I I ; span BC is 3 m with 

BC 3I I ; span CD is 3 m with CD 1.5I I ; span DE is 2 m with DEI I ) has the extreme end A 

fixed, extreme end E is free (i.e., DE is overhanging), and the intermediate supports at B, C and D. 

The span AB is subjected to a mid-span point load of 100 kN, the span BC is subjected to a 

uniformly distributed load of 40 kN/m over the entire span, the span CD is subjected to a point load 

of 90 kN at 1 m from C, and the span CD is subjected to two point loads of 10 kN and 5 kN at 1 m 

from D and at the tip respectively. Draw the shear force and bending moment diagrams.  

Solution:  

The continuous beam ABCDE is shown in Figure 3.31(i). The degree of static indeterminacy is 

three. Since the extreme end A is fixed, assume an imaginary span A′A extending beyond the end 

A with simple supports both at A′ and A with a span 0 0L  as shown in Figure 3.31(ii). The 

bending moment diagrams of the spans considered independently as simply supported beams are 

shown in Figure 3.31(iii). The value of moment at D is directly obtained from the overhanging 

portion DE. As the moment of inertia is not same for all the spans, the three-moment equations are 

written separately for A′AB, ABC and BCD.  

For A′AB: 

0 0 0 01 1 1 1
A' A B

0 0 1 1 0 0 1 1

6 6
2

L L A xL L A x
M M M

I I I I I L I L

      
           

      
 

where,  

A' 0M   

0 0L  m; 0 0A  ; 0 0x   

1 4L   m; 1 2I I  

Area of BMD in span AB, 
1

1
4 100 200.0

2
A      kNm2 

Centroid of 1A  from B, 
1

4
2.0

2
x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for A′AB, 

A B

4 4 6 200.0 2.0
0 2 0 0

2 2 2 4
M M

I I I

      
          

     
 

A B4 2 300.0M M    (3.34) 
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For ABC: 

1 1 2 2 1 1 2 2
A B C

1 1 2 2 1 1 2 2

6 6
2

L L L L A x A x
M M M

I I I I I L I L

       
            

       
 

where,  

1 4L   m; 1 2I I ; 2 3L   m; 2 3I I  

Area of BMD in span AB, 
1 200.0A   kNm2 

Centroid of 1A  from A, 
1

4
2.0

2
x    m (i.e., the shape is symmetrical) 

Area of BMD in span BC, 
2

2
3 45.0 90.0

3
A      kNm2 

Centroid of 2A  from C, 
2

3
1.5

2
x    m (i.e., the shape is symmetrical) 

Substituting the above values in the three moment-equation for ABC, 

A B C

4 4 3 3 6 200.0 2.0 6 90.0 1.5
2

2 2 3 3 2 4 3 3
M M M

I I I I I I

          
            

        
 

A B C2 6 390.0M M M     (3.35) 

For BCD: 

3 3 3 32 2 2 2
B C D

2 2 3 3 2 2 3 3

66
2

L L A xL L A x
M M M

I I I I I L I L

      
           

       
 

where,  

2 3L   m; 2 3I I ; 3 3L   m; 3 1.5I I  

D 5 2 10 1 20.0M         kNm (due to the loads on overhanging portion) 

Area of BMD in span BC, 
2 90.0A   kNm2 

Centroid of 2A  from B, 
2

3
1.5

2
x    m (i.e., the shape is symmetrical) 

Area of BMD in span CD, 
3

1
3 60.0 90.0

2
A      kNm2 

Centroid of 3A  from D, 
3

2 3
1.667

3
x


   m  

Substituting the above values in the three moment-equation for BCD, 

 B C

3 3 3 3 6 90.0 1.5 6 90.0 1.667
2 20.0

3 3 1.5 1.5 3 3 1.5 3
M M

I I I I I I

          
             

        
 

B C6 250.0M M    (3.36) 
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Solving Eqs. (3.34)(3.36), 

A 54.48M    kNm  

B 41.03M    kNm 

C 34.83M    kNm 

The moments 
AM , BM and CM  are hogging in nature; this typically means that the moment 

AM is anti-clockwise at A, and the moment BM  is clockwise at B for the span AB; the moment 

BM  is anti-clockwise at B, and the moment CM  is clockwise at C for the span BC; and the moment 

CM is anti-clockwise at C, and the moment DM  is clockwise at D for the span CD; and the moment 

DM  is anti-clockwise at D for the span DE. Therefore, the vertical reactions are obtained by 

applying equilibrium conditions. 

Span AB:  

0yF    
1A B 100 0V V     

A 0M    
1B 4 54.48 100 2 41.03 0V         

1B 53.36V   kN 

A 46.64V   kN 

Span BC:  

0yF    
2 1B C 40 3 0V V      

C 0M    
2B 3 41.03 40 3 3 2 34.83 0V          

2B 62.07V   kN 

1C 57.93V   kN 

Span CD:  

0yF    
2 1C D 90 0V V     

D 0M    
2C 3 34.83 90 2 20.0 0V         

2C 64.94V   kN 

1D 25.06V   kN 

Span DE:  

0yF    
2D 10 5 0V      

2D 15.0V   kN 
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The shear force and bending moment diagrams are shown in Figures 3.31(iv) and 3.31(v) 

respectively.  

 

Figure 3.31 Three-span continuous beam (Example 3.15) 

 
  

(i) Continuous beam with fixed end at A and overhanging at the right end 

A 

C B D F G 

E 

H 

90 kN 5 kN 100 kN 10 kN 40 kN/m 

2 m 

4 m 3 m 3 m 2 m 

2 m 1 m 

2I 3I 1.5I I 

(ii) Continuous beam with imaginary extended span A′A 

L0 

A′ A 

C B D F G 

E 

H 

90 kN 5 kN 100 kN 10 kN 40 kN/m 

4 m 3 m 3 m 2 m 

2I 3I 1.5I I 

(iii) Free moment diagrams of separated spans 

A′ A B C 

100.0 

60.0 kNm 

45.0  

1 
3 2 

(iv) Shear force diagram 

64.94 

 

+ + 

 

+ 

 

53.36 

46.64 62.07 

57.93 

5.0 kN 

25.06 

15.0 

(v) Bending moment diagram 

 

 
 

+ 

+ 

 

+ 

38.8 

54.48 

20.0 kNm 34.83 
41.03 

38.8 
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UNIT SUMMARY  

 Fixed beams are statically indeterminate to second degree (when axial force is neglected). 

 When the fixed beams are considered as cantilever beams, the redundant forces are the 

vertical reaction and moment reaction at the free end. 

 When the fixed beams are considered as simply supported beams, the redundant forces are 

the moment reactions at the supports. 

 Fixed end moments are obtained using standard formulas for different types of loads. 

 Net bending moment diagrams are obtained by superposing the free-bending moment 

diagrams with fixed end moment diagrams. 

 Two points of contraflexure exist in fixed beams for general loading. 

 Two-span continuous beams are statically indeterminate with degree of static 

indeterminacy one or two or three depending on the type of support at the extreme ends. 

 Claperon’s three-moment theorem can be applied to two-span continuous beams with one 

degree of static indeterminacy. 

 The support moments obtained by solving three-moment equations are generally negative, 

which means hogging in nature. 

 The final bending moment diagrams of continuous beams are obtained by superimposing 

free-bending moment diagrams (sagging) with end-moment diagrams (hogging). 
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EXERCISES  

3.1. A fixed beam of span 6 m is subjected to a point load of 50 kN at 2 m from the left support.  

Draw the shear force and bending moment diagrams. 

3.2. A fixed beam of span 6 m is subjected to two point loads of 50 kN and 75 kN at 2 m and 4 

m from the left support. Draw the shear force and bending moment diagrams. 

3.3. A fixed beam of span 12 m is subjected to three concentrated loads of 100 kN each at every 

3 m interval. Draw the shear force and bending moment diagrams. 

3.4. A fixed beam of span 6 m is subjected to a uniformly distributed load of 20 kN/m over the 

entire span, and a concentrated load of 40 kN at the mid-spam. Draw the shear force and 

bending moment diagrams. 

3.5. A fixed beam of span 6 m is subjected to a uniformly varying load with 30 kN/m at the left 

support and 20 kN/m at the right support. Draw the shear force and bending moment 

diagrams. 

3.6. A two span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends simply 

supported is subjected to 30 kN each at the mid-span locations. Analyse the beam for the 

force responses, and draw the shear force and bending moment diagrams. 

3.7. A two-span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends simply 

supported is subjected a uniformly distributed load of 10 kN/m over the span AB, and two 

point loads of 20 kN each at every 1 m in the span BC. Draw the shear force and bending 

moment diagrams. 

3.8. A two-span continuous beam ABC (AB=6 m; BC=3 m) with fixed at A and simply 

supported at C is subjected a uniformly distributed load of 10 kN/m over the span AB, and 

two point loads of 20 kN each at every 1 m in the span BC. Draw the shear force and 

bending moment diagrams. 

3.9. A two-span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends fixed is 

subjected a mid-span point load of 30 kN in the span AB, and two point loads of 20 kN 

each at every 1 m in the span BC. Draw the shear force and bending moment diagrams. 

3.10. A continuous beam ABCD (span of AB is 4 m with AB 3I I ; span of BC is 3 m with 

BC 2I I ; span of CD is 1 m with CD 1.5I I ) with fixed support at A, intermediate supports 

at B and C, and free at D (i.e., overhanging CD) is subjected a mid-span point load of 30 

kN in the span AB, a uniformly distributed load of 15 kN/m in the span BC, and a point 

load of 5 kN at the tip of span CD. Draw the shear force and bending moment diagrams.  
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QR Code for Fixed and Continuous Beams 

 

NPTEL Lecture: https://www.youtube.com/watch?v=-rB-UB7r55Q 
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UNIT SPECIFICS  

This unit discusses the following aspects. 

 Concept of moment distribution method 

 Force responses of statically indeterminate beams 

 Force responses of statically indeterminate frames 

RATIONALE  

Force responses of statically indeterminate structures can be obtained by adopting either 

compatibility or equilibrium based approaches. Irrespective of the method adopted, the resulting 

equations are solved simultaneously. However, the solution process becomes tedious when the 

number of equation is more. Therefore, this chapter presents an iterative procedure for analyzing 

statically indeterminate beams and frames. 

UNIT OUTCOMES 

List of outcomes of this unit is as follows. 

U4-O1: Describe the methods of structural analysis 

U4-O2:  Application of iterative methods 

U4-O3:  Development of moment distribution method  

U4-O4: Analysis of statically indeterminate beams  

U4-O5:  Analysis of statically indeterminate frames 

Mapping of Unit-4 Outcomes with Course Outcomes * 

 CO-1 CO-2 CO-3 CO-4 CO-5 

U4-O1 1 1 3 3 1 

U4-O2 1 1 3 3 1 

U4-O3 1 1 3 3 1 

U4-O4 1 1 3 3 1 

U4-O5 1 1 3 3 1 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation)  

Moment Distribution Method 4 
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4.1 Introduction 

The analysis of statically determinate structures and statically indeterminate structures necessarily 

requires the application of static equilibrium conditions. As already seen, the equilibrium equations 

alone are not sufficient to get a complete set of responses in case of statically indeterminate 

structures. Therefore, many methods have been developed to analyse the indeterminate structures 

under two broad approaches namely compatibility methods and equilibrium methods. In 

compatibility methods (e.g., consistent deformation method, theorem of three moments etc.), the 

identified redundants are determined after applying the compatibility conditions. However, in 

equilibrium methods (e.g., slope-deflection method), displacements are determined after applying 

the equilibrium conditions, and subsequently the force responses are obtained. Therefore, 

equilibrium methods are more comprehensive as the complete set of displacements and forces are 

readily obtained. Nonetheless, the solution process becomes laborious when the number of 

equations (i.e., equal to number of degrees of kinematic indeterminacy) is large. Hence, an iterative 

method based on a step-by-step procedure is developed, in which the initial step gives an 

approximation to the solution, and each subsequent step acts to refine the solution. The iteration 

can be terminated when the desired degree of accuracy is achieved. 

4.2 Slope-Deflection Equations 

The slope-deflection method was developed by George A. Maney in 1915 for analyzing statically 

indeterminate structures. This method is an equilibrium method that accounts for flexural 

deformations but ignores axial and shear deformations. The general form of force-deformation 

equation is written as 

 F 2 2 3nf nf nf n f nfM M EK        (4.1) 

where 

nfM  - member end moment 

F

nfM  - fixed end moment 

E  - modulus of elasticity 

nfK  - stiffness factor (equal to I L ) 

n  and f  -  member end rotations 

nf  - chord rotation (equal to nf L ) 

nf  - transverse displacement between the member ends  

and, the subscripts “n” and “f” refer to the “near-end” and “far-end” of member nf .  

Consider a beam segment AB subjected to arbitrary lateral loading as shown in Figure 4.1(i). 

In the absence of transverse displacement between the member ends, Eq. (4.1) is written for the 

end moments as 

 F

AB AB A B

2
2

EI
M M

L
     (4.2) 

 F

BA BA B A

2
2

EI
M M

L
     (4.3) 
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Eq. (4.2) and Eq. (4.3) can be understood as follows. 

(i) The applied loads induce bending of the beam, and the elastic curve rotates by A  and B  

over the supports at A and B respectively. This eventually balances the member end 

moments at the joints as AA' ABM M  and BA BB'M M .  

(ii) Assume the supports A and B are fixed such that the rotations at A and B are arrested. This 

introduces the fixed end moments 
F

ABM  and 
F

BAM  as shown in Figure 4.1(ii). 

(iii) Now support A is allowed to rotate by A  (i.e., fixed condition is released) by keeping the 

support B still fixed. This process develops the end moments in terms of A  as 

AB A

4EI
M

L
  and BA A

2EI
M

L
  as shown in Figure 4.1(iii). 

(iv) Similarly, now support B is allowed to rotate by B  (i.e., fixed condition is released) by 

keeping the support A fixed. This process develops the end moments in terms of B  as 

AB B

2EI
M

L
  and BA B

4EI
M

L
  as shown in Figure 4.1(iv). 

(v) Therefore, the total moment on the member end is thus seen to be the superposition of the 

above individual effects. 

 

Figure 4.1 Segment of a continuous beam  

The end-moment equations are functions of unknown displacements. Therefore, the moment 

equilibrium conditions are applied at each joint, and the resulting simultaneous equations are solved 

for the displacements (i.e., number of unknown displacements is equal to number of degrees of 

kinematic indeterminacy). Finally, the member end moments are obtained by substituting the 

displacement quantities into the end-moment equations. 

(i) Beam segment AB 

A 

L 

B′ 
MAB 

A′ B 

MBA 

𝑀AB
F  𝑀BA

F  

(ii) Supports A and B are fixed 

4𝐸𝐼

𝐿
𝜃A 

2𝐸𝐼

𝐿
𝜃A 

(iii) Support A is released 

2𝐸𝐼

𝐿
𝜃B 

4𝐸𝐼

𝐿
𝜃B 

(iv) Support B is released 

MAA′ MBB′ 
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4.3 Moment Distribution Method for Beams 

Even though the slope-deflection method produces the complete set of displacements and forces, 

the direct solutions to the simultaneous equations are infeasible for large number of unknown 

displacements. Moreover, displacements need to be necessarily determined in order to obtain the 

force responses. Alternatively, an iterative method called the moment distribution method was 

developed by Hardy Cross in 1930, in which the explicit determination of the unknown 

displacement is avoided, and the various end moments are directly obtained.   

The physical significance of the steps in iterative procedure involves fixing the unknown 

displacements and releasing them one at a time. The process of fixity results in moments 

accumulating at various joints, which need to be balanced. These moments are distributed to the 

various connecting elements depending on their relative stiffness, and also the distributed moments 

are getting carried over to the far-ends. Some of these carried over moments create imbalance, 

which necessitates further balancing in the subsequent step. This alternating procedure of fixing 

and releasing (i.e., balancing) is iteratively carried out until the residual unbalanced moments at all 

joints become negligible. 

4.3.1 Bending Stiffness 

Consider a prismatic beam AB with a hinged support at A, and fixed support at B as shown in 

Figure 4.2(i). When a moment M  is applied at A, the beam rotates by an angle A  at A, and a 

moment  BAM  is developed at B. Therefore, the relationship between the applied moment and the 

rotation is expressed as, 

A A

4EI
M K

L
 

 
  
 

 (4.4) 

where 
4EI

K
L

  is the bending stiffness. This means, a moment equal to 
4EI

L
 is required to be 

applied at A to cause unit rotation if the far end is fixed.  

 

Figure 4.2 A prismatic beam  

 

𝜃A 

M 

MBA 

L 

A 

B 
M 

MBA=M/2 

(i) Beam with far-end fixed  

𝜃A 

M 
L 

A 

B 
M 

MBA=0 

(ii) Beam with far-end hinged  
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Similarly, when the far end B is hinged as shown in Figure 4.2(ii), the relationship between the 

applied moment and the rotation is 

A A

3EI
M K

L
 

 
  
 

 (4.5) 

where 
3EI

K
L

  is the bending stiffness. This means, a moment equal to 
3EI

L
 is required to be 

applied at A to cause unit rotation if the far end is hinged. 

4.3.2 Carry-Over Moment 

When a moment M  is applied at A for a beam with the far end fixed as shown in Figure 4.2(i), a 

moment BAM  develops at B which is termed as the carry-over moment. Therefore, BAM  is 

expressed in terms of the applied moment. 

BA A

2

2

EI M
M

L


 
  
 

 (4.6) 

Eq. (4.6) indicates, when a moment M  is applied at A, one-half of the applied moment is carried 

over to the far end B if it is fixed. Therefore, the carry-over factor (COF) is 1 2 .  

Similarly, when the far end is hinged as shown in Figure 4.2(ii), no moment develops at B. 

Hence, the carry-over factor (COF) is zero. The respective bending moment diagrams are also 

shown in Figure 4.2. 

4.3.3 Distribution Factor 

Consider a structure with three members connected at B as shown in Figure 4.3. When a moment 

M  is applied at joint B to cause a rotation B , each of the three members connected to the joint B 

resists the applied moment by a fraction depending on its relative stiffness. From the moment 

equilibrium at B, 

B 0M    BA BC BD 0M M M M     

 BA BC BDM M M M     (4.7) 

 

Figure 4.3 Three-member frame structure  

M 

A 

B 

C 

D 

L1, I1 

L2, I2 

L3, I3 
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When B  occurs at joint B, the ends of all members connected to the joint also rotates to the 

same amount as the members are rigidly connected to joint B. Therefore, the moment resisted by 

each member can be expressed in terms of joint rotation B . 

BA BA BM K   (4.8) 

BC BC BM K   (4.9) 

BD BD BM K   (4.10) 

where 
BAK , 

BCK , and 
BDK  are the bending stiffness of the members. Substitution of Eqs. 

(4.8)(4.10) into Eq. (4.7) yields 

   BA BC BD B B BM K K K K         (4.11) 

 B

B

M

K






 (4.12) 

where 
BK represents sum of the bending stiffness of all the members connected to joint B. 

Therefore, Eqs. (4.8)(4.10) become: 

 
BA

BA BA BA

BB

KM
M K M M

KK


 
       

 
 (4.13) 

 
BC

BC BC BC

BB

KM
M K M M

KK


 
       

 
 (4.14) 

 
BD

BD BD BD

BB

KM
M K M M

KK


 
       

 
 (4.15) 

where BA
BA

B

K

K
 


, BC

BC

B

K

K
 


, and BD

BD

B

K

K
 


 are the distribution factors of members AB, 

BC and BD for end B.  The function of a distribution factor is to apportion the moment applied at 

a joint to the member end with respect to the relative stiffness of the member among the members 

connected to that joint.  

For example, a three-member structure is subjected to a clockwise moment of 100 kNm at B 

as shown in Figure 4.4(i). If BA 3 mL  , BC 4 mL  , BD 2 mL  , BA 2EI EI , BC 2EI EI  and 

BD 3EI EI , then the values of stiffness at joint B: 

BA
BA

BA

3EI
K

L
  (i.e., the far end A is hinged) 

BA

3 (2 )
2

3

EI
K EI


   
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BC
BC

BC

3EI
K

L
  (i.e., the far end C is hinged) 

BC

3 (2 )
1.5

4

EI
K EI


   

BD
BD

BD

4EI
K

L
  (i.e., the far end D is fixed) 

BD

4 (3 )
6

2

EI
K EI


   

Therefore, the distribution factors are 

BA BA
BA

B BA BC BD

2
0.21

2 1.5 6

K K EI

K K K K EI EI EI
    

   
 

BC BC
BC

B BA BC BD

1.5
0.16

2 1.5 6

K K EI

K K K K EI EI EI
    

   
 

BD BD
BD

B BA BC BD

6
0.63

2 1.5 6

K K EI

K K K K EI EI EI
    

   
 

From the distribution factors, the end moments can be obtained as 

BA BA 0.21 100 21.0M M        kNm 

BC BC 0.16 100 16.0M M        kNm 

BD BD 0.63 100 63.0M M        kNm 

Since the far end D is fixed, the moment carried over to DB is  
1

63.0 31.5
2
     kNm.  

No moment is carried over to the far end if hinged/roller. Therefore, the ends AB and CB do not 

get any carry over moments. The bending moment diagram is as shown in Figure 4.4(ii). It is to be 

noted that the summation of all moments at the joint is equal to zero.  

B 0M    100 ( 21.0) ( 16.0) ( 63.0) 0        

 

Figure 4.4 Three-member frame structure 

100 kNm 
A C 

B 

2EI 

D 

3 m 4 m 

2 m 

2EI 

3EI 

(i) Structure with applied moment  

16.0 

21.0 

3
1
.5

 

6
3
.0

 

(ii) Bending moment diagram (in kNm)  
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4.3.4 Steps Involved in Moment Distribution Method  

The moment distribution method can be adopted to analyze statically indeterminate structures, and 

it is performed in tabular format. The beam problems can be solved by one moment distribution 

table. Symmetrical frames subjected to symmetrical loading can also be solved in a same manner. 

However, the frame problems with unknown sway degree of freedom require more than one 

distribution table. The steps involved in solving the continuous beam problems are as follows. 

(i) Using the standard formulas, the fixed end moments are determined by assuming all the 

supports as fixed. 

(ii) At the joints, the stiffness ( K ) of the members connected to the joint, and subsequently 

the distribution factors ( ) are obtained. 

(iii) In the moment distribution table, in case of hinged extreme end (or with an overhang), the 

unbalanced moment is released at the beginning, and half of the moment is carried over to 

the far-end (i.e., joint). No further operation is allowed in this support till the end. 

(iv) In the first iteration, the unbalanced moments at each joint are distributed (i.e., balanced) 

using the distribution factors, and the distributed moments are carried over to the respective 

far-ends using carry over factor. 

(v) The step (iv) is repeated until the unbalanced moments at all joints become insignificant. 

(vi) The end moments are obtained by algebraic summation of the moments in all iteration 

cycles.  

(vii) The final bending moment diagrams are obtained by superimposing free moment diagram 

with the end moment diagram. 

 

4.3.5 Numerical Examples 

Example 4.1: A two-span continuous beam ABC (span AB is 3 m and span BC is 5 m) has the 

extreme ends A and C fixed. The span AB is subjected to a uniformly distributed load of 20 kN/m 

over the entire span. The span BC is subjected to a point load of 30 kN at 3 m from the right end. 

Draw the shear force and bending moment diagrams. Assume a constant flexural rigidity 

throughout the beam. [Same as Example 3.13] 

Solution:  

Step (i): Fixed end moments 

The fixed end moments are obtained by using the standard formulas given in Table 3.1. 

Span AB: 
2 2

F

AB

20 3.0
15.0

12 12

wL
M

  
     kNm 

2 2
F

BA

20 3.0
15.0

12 12

wL
M

  
     kNm 
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Span BC: 
2 2

F

BC 2 2

30 2 3
21.6

5

Wab
M

L

   
     kNm 

2 2
F

CB 2 2

30 2 3
14.4

5

Wa b
M

L

   
     kNm 

Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

4 4
1.333

3

EI EI
K EI

L
    (i.e., the far end A is fixed) 

Stiffness, BC
BC

BC

4 4
0.8

5

EI EI
K EI

L
    (i.e., the far end C is fixed) 

Distribution factor, BA BA
BA

B BA BC

1.333
0.625

1.333 0.8

K K EI

K K K EI EI
    

 
 

Distribution factor, BC BC
BC

B BA BC

0.8
0.375

1.333 0.8

K K EI

K K K EI EI
    

 
 

Step (iii): Moment distribution table 

(a) The table is created with one column for each end moment. The respective distribution 

factors are entered for every joint (
BA 0.625   and 

BC 0.375  ). 

(b) Fixed end moments are entered ( F

AB 15.0M   , F

BA 15.0M   , F

BC 21.6M   , 

F

BC 14.4M   ) 

(c) Since the extreme ends are fixed, no moment is released at the extreme end locations. 

(d) At joint B, the unbalanced moment is 15.0 21.60 6.6    . Therefore, 6.6  is required 

to be applied at B to balance the joint moments. Out of 6.6 , based on the distribution 

factors,  0.625 6.6 4.13     is distributed for the end BA and  0.375 6.6 2.48     is 

distributed for the end BC.  

(e) Half of the distributed moments (i.e., balancing) are carried over to the respective far ends.  

This means,  
1

( 4.13) 2.06
2
     is carried over to AB, and 

1
( 2.48) 1.24

2
     is carried 

over to CB. 

(f) The steps involved in (d) and (e) constitute one cycle of iteration (i.e., balancing and 

carrying over to the far end). 
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(g) At this stage, no unbalanced moment exists in joint B. Therefore, no further cycle of 

iteration is possible. 

(h) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  

AB 15.0 2.06 12.94M       kNm 

BA 15.0 4.13 19.13M       kNm 

BC 21.6 2.48 19.13M       kNm 

CB 14.4 1.24 15.64M       kNm 

As a check, the summation of joint moments should be equal to zero. 

 BA BC 19.13 19.13 0M M      

 Joint A B C 

 End AB BA BC CB 

 DF  0.625 0.375  

 FEM 15.00 +15.00 21.60 +14.40 

Cycle 1 
Balance   +4.13 +2.48  

COM +2.06   +1.24 

 End 

moments 
12.94 +19.13 19.13 +15.64 

Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

(Figure 4.5(ii)) with the end moment diagram (Figure 4.5(iii)). The same sign convention is 

followed as given in Figure 3.10 for the end moment diagram. This means, the anti-clockwise 

moment at the end AB (12.94 kNm) and the clockwise moment at the end BA for the member AB 

cause hogging curvature, hence the diagram is drawn on one side of the reference axis. Similarly, 

the member BC is also in hogging nature. When the free moment and end moment diagrams are 

superposed, the net moment diagram is resulted.  

The shear force and bending moment diagrams are shown in Figures 4.5(iv) and 4.5(v) 

respectively. 
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Figure 4.5 Two-span continuous beam (Example 4.1) 

 

Example 4.2: A three-span continuous beam ABCD (
AB 5L  m; 

BC 3L  m; 
CD 4L  m) has the 

extreme ends A and D fixed, and intermediate supports at B and C. The span AB is subjected to 

two point loads of 40 kN and 50 kN at 1 m and 4 m respectively from A. The span BC is subjected 

to a uniformly distributed load of 20 kN/m over the entire span. The span BC is subjected to a mid-

span point load of 50 kN. Draw the shear force and bending moment diagrams. Assume a constant 

flexural rigidity throughout the beam.  

 

27.94 

32.06 

18.70 

11.30 
 

 

+ + 

(iv) Shear force diagram (in kN) 

(i) Continuous beam  

30 kN 20 kN/m 

3 m 

3 m 

5 m 

A 
B C D 

(ii) Free moment diagram (in kNm) 

+ + 

20 × 32

8
= 22.5 

30 × 2 × 3

5
= 36.0

= 22.5 

(iii) End moment diagram (in kNm) 

12.94 19.13 15.64 

  12.94 15.64 

19.13 

(v) Bending moment diagram (in kNm) 

19.13 

12.94 15.64 
 

 

+ 

18.26 

 

+ 
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Solution:  

Step (i): Fixed end moments 

Span AB: 
2 2

F

AB 2

40 1 4 50 4 1
33.6

5
M

     
    kNm 

2 2
F

BA 2

40 1 4 50 4 1
38.4

5
M

     
    kNm 

Span BC: 
2

F

BC

20 3
15.0

12
M

 
    kNm 

2
F

CB

20 3
15.0

12
M

 
    kNm 

Span CD: 

F

CD

50 4
25.0

8
M

 
    kNm 

F

DC

50 4
25.0

8
M

 
    kNm 

Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

4 4
0.8

5

EI EI
K EI

L
    (i.e., the far end A is fixed) 

Stiffness, BC
BC

BC

4 4
1.333

3

EI EI
K EI

L
    (i.e., the far end C is like a fixed support) 

Distribution factor, BA BA
BA

B BA BC

0.8
0.375

0.8 1.333

K K EI

K K K EI EI
    

 
 

Distribution factor, BC BC
BC

B BA BC

1.333
0.625

0.8 1.333

K K EI

K K K EI EI
    

 
 

Joint C: 

Stiffness, CB
CB

CB

4 4
1.333

3

EI EI
K EI

L
    (i.e., the far end B is like a fixed support) 

Stiffness, CD
CD

CD

4 4

4

EI EI
K EI

L
    (i.e., the far end D is fixed) 

Distribution factor, CB CB
CB

C CB CD

1.333
0.571

1.333

K K EI

K K K EI EI
    

 
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Distribution factor, CD CD
CD

C CB CD

0.429
1.333

K K EI

K K K EI EI
    

 
 

Step (iii): Moment distribution table 

(a) The table is created with one column for each end moment. The respective distribution 

factors are entered for every joint. 

(b) Fixed end moments are entered.  

(c) Since the extreme ends are fixed, no moment is released at the extreme end locations. 

(d) At joint B, the unbalanced moment is 38.4 15.0 23.4    . Therefore, 23.4  is required 

to be applied at B to balance the joint moments. Out of 23.4 , based on the distribution 

factors,  0.375 23.4 8.78     is distributed to the end BA and  0.625 23.4 14.62    

is distributed to the end BC. The moment 
8.78

4.39
2


   is carried over to the far end AB, 

and  
14.62

7.31
2


   is carried over to the far end CB. 

(e) At joint C, the unbalanced moment is 15.0 25.0 10.0    . Therefore, 10.0  is required 

to be applied at C to balance the joint moments. Out of 10.0 , based on the distribution 

factors,  0.571 10.0 5.71     is distributed to the end CB and  0.429 10.0 4.29     

is distributed to the end CD. The moment 
5.71

2.86
2


   is carried over to the far end BC, 

and  
4.29

2.15
2


   is carried over to CD. 

(f) At the end of cycle 1, the unbalanced moment at joint B is 2.86 , which is balanced again 

(i.e., distributed to BA and BC) based on the distribution factors, and then carried over to 

the respective far ends (i.e., AB and CB). Similarly, the unbalanced moment at joint C is 

7.31 , which is balanced again (i.e., distributed to CB and CD) based on the distribution 

factors, and then carried over to the respective far ends (i.e., BC and DC).  

(g) The above step (f) is repeated until the unbalanced moment at all the joints become 

insignificant (i.e., close to zero). 

(h) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  

AB 33.6 4.39 0.54 0.39 0.05 0.03 39.0M           kNm 

BA 38.4 8.78 1.07 0.78 0.10 0.07 0.01 0.01 27.58M             kNm 
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BC 15.0 14.62 2.86 1.78 2.09 1.31 0.25 0.15

            0.19 0.12 0.02 0.01 0.02 0.01 27.58 kNm

M         

       
  

CB 15.0 5.71 7.31 4.17 0.89 0.51 0.65

           0.37 0.08 0.05 0.06 0.03 0.01 16.84 kNm

M        

      
 

CD 25.0 4.29 3.14 0.38 0.28 0.03 0.03 16.84M            kNm 

DC 25.0 2.15 1.57 0.19 0.14 0.02 29.08M           kNm 

As a check, the summation of joint moments should be equal to zero. 

 BA BC 27.58 27.58 0M M       

 CB CD 16.84 16.84 0M M       

 Joint A B C D 

 End AB BA BC CB CD DE 

 DF  0.375 0.625 0.571 0.429  

 FEM 33.60 38.40 15.00 15.00 25.00 25.00 

Cycle 1 
Balance    8.78 14.62 5.71 4.29   

COM 4.39   2.86 7.31   2.15 

Cycle 2 
Balance    1.07 1.78 4.17 3.14   

COM 0.54   2.09 0.89   1.57 

Cycle 3 
Balance    0.78 1.31 0.51 0.38   

COM 0.39   0.25 0.65   0.19 

Cycle 4 
Balance    0.10 0.15 0.37 0.28   

COM 0.05   0.19 0.08   0.14 

Cycle 5 
Balance    0.07 0.12 0.05 0.03   

COM 0.03   0.02 0.06   0.02 

Cycle 6 
Balance    0.01 0.01 0.03 0.03   

COM 0.00   0.02 0.01   0.02 

Cycle 7 
Balance    0.01 0.01 0.00 0.00   

COM 0.00   0.00 0.00   0.00 

 End 

moments 
39.00 27.58 27.58 16.84 16. 84 29.08 

 

Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

(Figure 4.6(ii)) with the end moment diagram (Figure 4.6(iii)). The shear force and bending 

moment diagrams are shown in Figures 4.6(iv) and 4.6(v) respectively. 
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Note: In Example 4.1, the ends BA and BC in joint B did not get any carry-over moment. Therefore, 

the next cycle of iteration was not possible. However, in Example 4.2, the end BC in joint B got a 

carry-over moment from the end CB. Similarly, the end CB in joint C got a carry-over moment 

from the end BC. These carry-over moments remain as the unbalanced moments in the respective 

joints, and prompted for the next cycle of iteration. This process continues till the carryover 

moments become insignificant (i.e., close to zero). 

 

Figure 4.6 Three-span continuous beam (Example 4.2) 

 
 

 

(i) Continuous beam  

A 
B C D 

2 m 

50 kN 
20 kN/m 

40 kN 50 kN 

5 m 3 m 4 m 

1 m 3 m 

(iii) End moment diagram (in kNm) 

39.0 27.58 29.08 16.84 

  

39.0 
29.08 

27.58 

 

16.84 

(ii) Free moment diagram (in kNm) 

+ 
+ + 

42.0 48.0 

22.5 

50.0 

(iv) Shear force diagram (in kN) 

44.28 

45.72 

4.28 

28.06 

33.58 

26.42 

21.94 

 

+ + 

  

+ 

(v) Bending moment diagram (in kNm) 

+ 
+ 

 
  

 

39.0 
29.08 

27.58 
16.84 

27.04 
5.28 18.12 
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Example 4.3: A two-span continuous beam ABC (span AB is 6 m and span BC is 4 m) has the 

extreme end A fixed while the end C is hinged. The span AB is subjected to a uniformly distributed 

load of 10 kN/m over the entire span. The span BC is subjected to a concentrated load of 30 kN 

acting at 3 m from C. Draw the shear force and bending moment diagrams. Assume a constant 

flexural rigidity throughout the beam. [same as Example 3.11] 

Solution:  

Step (i): Fixed end moments 

2
F

AB

10 6
30.0

12
M

 
    kNm 

2
F

BA

10 6
30.0

12
M

 
    kNm 

2
F

BC 2

30 1 3
16.875

4
M

  
    kNm 

2
F

CB 2

30 1 3
5.625

4
M

  
    kNm 

Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

4 4
0.667

6

EI EI
K EI

L
    (i.e., the far end A is fixed) 

Stiffness, BC
BC

BC

3 3
0.75

4

EI EI
K EI

L
    (i.e., the far end C is hinged) 

Distribution factor, BA BA
BA

B BA BC

0.667
0.47

0.667 0.75

K K EI

K K K EI EI
    

 
 

Distribution factor, BC BC
BC

B BA BC

0.75
0.53

0.667 0.75

K K EI

K K K EI EI
    

 
  

Step (iii): Moment distribution table 

(a) Similar to the previous examples, the distribution factors and fixed end moments are 

entered in the table. 

(b) Since the extreme end C is hinged, the moment at CB (+5.625) needs to be released. 

Therefore, 5.625 is added at CB, and then 5.625 2 2.81    is carried over to the far end 

BC. By releasing the moment at CB, the moment at CB has become zero, which is the final 

moment. Therefore, no further operations are carried out at the end CB. 
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(c) Now the initial moment is revised by including the moment received at BC as carryover 

moment. 

(d) At joint B, the unbalanced moment is 30.0 19.69 11.31    . Therefore, 11.31  is 

distributed to the ends BA ( 4.85 ) and BC ( 5.47 ), and then 4.85 2 2.42    is carried 

over to the far end AB. Since the extreme end CB is hinged, no moment is carried over to 

CB from BC. 

(e) At this stage, no unbalanced moment exists in joint B. Therefore, no further cycle of 

iteration is possible. 

(f) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  

AB 30.0 2.42 32.42M       kNm 

BA 30.0 4.85 25.15M       kNm 

BC 19.69 5.47 25.16M       kNm 

CB 0M   kNm 

As a check, the summation of joint moments should be equal to zero. 

 BA BC 25.15 25.16 0.01 0M M      

Note: The reason for not getting the summation of joint moments exactly equal to zero is the round-

off error resulting from the distribution factor, balancing and carry-over moments. 

 Joint A B C 

 End AB BA BC CB 

 DF  0.47 0.53  

 FEM 30.00 +30.00 16.88 +5.63 

 

Release    5.63 

COM   2.81  

Initial 

moment 
30.00 +30.00 19.69 0 

Cycle 1 
Balance  4.85 5.47  

COM 2.42 
 

  

 End 

moments 
32.42 +25.15 25.16 0 

Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

with the end moment diagram. The shear force and bending moment diagrams are shown in Figures 

4.7(ii) and 4.7(iii) respectively. 
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Figure 4.7 Two-span continuous beam (Example 4.3) 

 

Example 4.4: A two-span continuous beam ABC (span AB is 5 m and span BC is 3 m) has the 

extreme end A hinged while the end C is fixed. The span AB is subjected to two concentrated loads 

of 10 kN each acting at 1m, and 4 m from A. The span BC is subjected to a mid-span point load of 

30 kN. Draw the shear force and bending moment diagrams. Assume a constant flexural rigidity 

throughout the beam. [same as Example 3.12] 

Solution:  

Step (i): Fixed end moments 

2 2
F

AB 2

10 1 4 10 4 1
8.0

5
M

     
    kNm 

2 2
F

BA 2

10 1 4 10 4 1
8.0

5
M

     
    kNm 

F

BC

30 3
11.25

8
M

 
    kNm 

F

CB

30 3
11.25

8
M

 
    kNm 

 

 

(i) Continuous beam  

30 kN 10 kN/m 

6 m 

3 m 

4 m 

A B 

C 
D 

(ii) Shear force diagram (in kN) 

31.22 

28.78 

28.78 

1.22  
 

+ + 

(iii) Bending moment diagram (in kNm) 

32.42 
25.15 

 
 

+ 

16.23 

3.66 
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Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

3 3
0.6

5

EI EI
K EI

L
    (i.e., the far end A is hinged) 

Stiffness, BC
BC

BC

4 4
1.333

3

EI EI
K EI

L
    (i.e., the far end C is fixed) 

Distribution factor, BA BA
BA

B BA BC

0.6
0.31

0.6 1.333

K K EI

K K K EI EI
    

 
 

Distribution factor, BC BC
BC

B BA BC

1.333
0.69

0.6 1.333

K K EI

K K K EI EI
    

 
  

Step (iii): Moment distribution table 

(a) Similar to the previous examples, the distribution factors and fixed end moments are 

entered in the table. 

(b) Since the extreme end A is hinged, the moment at AB (8.0) needs to be released. 

Therefore, +8.0 is added at AB, and then 8.0 2 4.0    is carried over to the far end BA. 

By releasing the moment at AB, the moment at AB has become zero, which is the final 

moment. Therefore, no further operations are carried out at the end AB. 

(c) Now the initial moment is revised by including the moment received at BA as carryover 

moment. 

(d) At joint B, the unbalanced moment is balanced and distributed to BA and BC, then the 

moment is carried over to the far end CB. Since the extreme end AB is hinged, no moment 

is carried over to AB from BA. 

(e) At this stage, no unbalanced moment exists in joint B. Therefore, no further cycle of 

iteration is possible. 

(f) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  
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 Joint A B C 

 End AB BA BC CB 

 DF  0.31 0.69  

 FEM 8.00 +8.00 11.25 +11.25 

 

Release +8.00    

COM  +4.00   

Initial 

moment 
0 +12.00 11.25 +11.25 

Cycle 1 
Balance  0.23 0.52  

COM -   0.26 

 End 

moments 
0 +11.77 11.77 +10.99 

 

Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

with the end moment diagram. The shear force and bending moment diagrams are shown in Figures 

4.8(ii) and 4.8(iii) respectively. 

 

Figure 4.8 Two-span continuous beam (Example 4.4) 

 

(i) Continuous beam with fixed end at C 

30 kN 10 kN 10 kN 

5 m 

1.5 m 

3 m 

3 m 1 m 

A 

C 

F 

B 

D E 

(ii) Shear force diagram (kN) 

 
 

+ 

+ 

7.65 

12.35 

15.26 

14.74  

2.35 

(iii) Bending moment diagram (in kNm) 

  

+ 

+ 

11.77 

10.99 

7.65 

11.12 



Theory of Structures| 201 

 

Example 4.5: A two-span continuous beam ABC (span AB is 4 m and span BC is 8 m) has the 

extreme ends simply supported. The span AB is subjected to two concentrated loads of 30 kN and 

60 kN acting at 1 m and 2 m from A. The span BC is subjected to three concentrated loads of 25 

kN, 30 kN and 15 kN respectively at 2 m, 4 m and 6 m from B. Draw the shear force and bending 

moment diagrams. Assume a constant flexural rigidity throughout the beam. [same as Example 

3.10] 

Solution:  

Step (i): Fixed end moments 

2 2
F

AB 2

30 1 3 60 2 2
46.875

4
M

     
    kNm 

2 2
F

BA 2

30 1 3 60 2 2
35.625

4
M

     
    kNm 

2 2 2
F

BC 2

25 2 6 30 4 4 15 6 2
63.75

8
M

        
    kNm 

2 2 2
F

CB 2

25 2 6 30 4 4 15 6 2
56.25

8
M

        
    kNm 

Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

3 3
0.75

4

EI EI
K EI

L
    (i.e., the far end A is hinged) 

Stiffness, BC
BC

BC

3 3
0.375

8

EI EI
K EI

L
    (i.e., the far end C is hinged) 

Distribution factor, BA BA
BA

B BA BC

K K

K K K
  


 

0.75
0.667

0.75 0.375

EI

EI EI
 


 

Distribution factor, BC BC
BC

B BA BC

K K

K K K
  


 

0.375
0.333

0.75 0.375

EI

EI EI
 


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Step (iii): Moment distribution table 

(a) Similar to the previous examples, the distribution factors and fixed end moments are 

entered in the table. 

(b) Since the extreme end A is hinged, the moment at AB (46.875) needs to be released. 

Therefore, +46.875 is added at AB, and then 46.875 2 23.438    is carried over to the 

far end BA. By releasing the moment at AB, the moment at AB has become zero, which is 

the final moment. Therefore, no further operations are carried out at the end AB. Similarly, 

as the extreme end C is also hinged, the moment at CB (+56.25) needs to be released. 

Therefore, 56.25 is added at CB, and then 56.25 2 28.125    is carried over to the far 

end BC. By releasing the moment at CB, the moment at CB has become zero, which is the 

final moment. Therefore, no further operations are carried out at the end CB. 

(c) Now the initial moment is revised by including the moments received at BA and BC as 

carryover moments. 

(d) At joint B, the unbalanced moment is balanced and distributed to BA and BC. No moment 

is carried over to the far ends AB and CB as these ends are hinged. 

(e) At this stage, no unbalanced moment exists in joint B. Therefore, no further cycle of 

iteration is possible. 

(f) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  

 Joint A B C 

 End AB BA BC CB 

 DF  0.667 0.333  

 FEM 46.875 +35.625 63.750 +56.250 

 

Release +46.875   56.250 

COM  +23.438 28.125  

Initial 

moment 
0 +59.063 91.875 0 

Cycle 1 
Balance  +21.886 +10.926  

COM -   - 

 End 

moments 
0 +80.949 +80.949 0 

Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

with the end moment diagram. The shear force and bending moment diagrams are shown in Figures 

4.9(ii) and 4.9(iii) respectively. 
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Figure 4.9 Continuous beam with simply supported ends (Example 4.5) 

 

Example 4.6: A continuous beam ABCDE (span AB is 4 m with AB 2I I ; span BC is 3 m with 

BC 3I I ; span CD is 3 m with CD 1.5I I ; span DE is 2 m with DEI I ) has the extreme end A 

fixed, extreme end E is free (i.e., DE is overhanging), and the intermediate supports at B, C and D. 

The span AB is subjected to a mid-span point load of 100 kN, the span BC is subjected to a 

uniformly distributed load of 40 kN/m over the entire span, the span CD is subjected to a point load 

of 135 kN at 1 m from C, and the span DE is subjected to two point loads of 10 kN and 5 kN at 1 

m from D and at the tip respectively. Draw the shear force and bending moment diagrams. 

Solution:  

Step (i): Fixed end moments 

Span AB: 

F

AB

100 4
50.0

8
M

 
    kNm 

F

BA

100 4
50.0

8
M

 
    kNm 

 

(i) Continuous beam 

30 kN 60 kN 25 kN 30 kN 15 kN 

1 m 

4 m 8 m 

1 m 2 m 2 m 2 m 

A B C 

E D F G H 

(ii) Shear force diagram (in kN) 

 
 

+ 
+ 

32.3 

2.3 

57.7 

47.6 

22.6 

7.4 

22.4 22.4 

80.9 

32.3 

34.5 

14.3 

59.5 

44.8  

+ 

 + 

(iii) Bending moment diagram (in kNm) 
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Span BC: 
2

F

BC

40 3
30.0

12
M

 
    kNm 

2
F

CB

40 3
30.0

12
M

 
    kNm 

Span CD: 
2

F

CD 2

135 1 2
60.0

3
M

  
    kNm 

2
F

DC 2

135 1 2
30.0

3
M

  
    kNm 

Span DE: 
F

DE DE 5 2 10 1 20.0M M         kNm (i.e., moment due to cantilever action) 

ED 0M   

Step (ii): Stiffness and distribution factors 

Joint B: 

Stiffness, BA
BA

BA

4 4 (2 )
2

4

EI E I
K EI

L
    (i.e., the far end A is fixed) 

Stiffness, BC
BC

BC

4 4 (3 )
4

3

EI E I
K EI

L
    (i.e., the far end C is like a fixed support) 

Distribution factor, BA BA
BA

B BA BC

2
0.333

2 4

K K EI

K K K EI EI
    

 
 

Distribution factor, BC BC
BC

B BA BC

4
0.667

2 4

K K EI

K K K EI EI
    

 
 

Joint C: 

Stiffness, BA
CB

BA

4 4 (3 )
4

3

EI E I
K EI

L
    (i.e., the far end B is like a fixed support) 

Stiffness, BC
CD

BC

3 3 (1.5 )
1.5

3

EI E I
K EI

L
    (i.e., the far end D is hinged) 

With reference to joint C, the perspective of the far ends (i.e., supports at B and D) is different, 

even though they appear to be simply supported. The support B has an adjoining span BA that 

resists the free rotation of joint B, while the adjoining span DE (i.e., overhanging portion) does not 

resist the free rotation of joint D. That is why the support D is considered as hinged.  

Distribution factor, CB CB
CB

C CB CD

4
0.727

4 1.5

K K EI

K K K EI EI
    

 
 

Distribution factor, CD CD
CD

C CB CD

1.5
0.273

4 1.5

K K EI

K K K EI EI
    

 
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Step (iii): Moment distribution table 

(a) The distribution factors and fixed end moments are entered in the table. 

(b) Since the extreme end E is free, the moment at ED is zero.  

(c) The final moment at the end DE is 20.0 kNm due to the loads acting on the overhanging 

portion. Therefore, for the joint equilibrium, the final moment at the end DC should be 

equal to +20.0 kNm. 

(d) Since the support at D is considered as hinged, the unbalanced moment (

20.0 30.0 10.0    ) should be released at the initial stage itself. Therefore, 10.0  is 

added at DC, and 10.0 2 5.0    is carried over to CD. No further operations are carried 

out at the ends DC, DE and ED. 

(e) The initial moments are revised by including the carryover moment. 

(f) In the first cycle of iteration, the unbalanced moments at the joints are balanced, and carried 

over to the respective far ends. 

(g) The iteration is continued till the unbalanced moments at joints B and C become negligibly 

small. 

(h) Now, the end moments are obtained by algebraic summation of all the moments.  

 Joint A B C D E 

 End AB BA BC CB CD DC DE ED 

 DF  0.333 0.667 0.727 0.273    

 FEM 50.00 +50.00 30.00 +30.00 60.00 +30.00 20.00 0 

 Release      10.00   

 COM     5.00    

 Initial 

moments 
50.00 +50.00 30.00 +30.00 65.00 +20.00 20.00 0 

Cycle 1 
Balance   6.66 13.34 25.45 9.56    

COM 3.33  12.72 6.67     

Cycle 2 
Balance   4.24 8.49 4.85 1.82    

COM 2.12  2.42 4.24     

Cycle 3 
Balance   0.81 1.62 3.08 1.16    

COM 0.40  1.54 0.81     

Cycle 4 
Balance   0.51 1.03 0.59 0.22    

COM 0.26  0.29 0.51     

Cycle 5 
Balance   0.10 0.20 0.37 0.14    

COM 0.05  0.19 0.10     

Cycle 6 
Balance   0.06 0.12 0.07 0.03    

COM 0.03  0.04 0.06     

Cycle 7 
Balance   0.01 0.02 0.05 0.02    

COM 0.01  0.02 0.01     

 End 

moments 
56.19 37.61 37.59 52.05 52.06 20.00 20.00 0 
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Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

with the end moment diagram. The shear force and bending moment diagrams are shown in Figures 

4.10(ii) and 4.10(iii) respectively. 

 

Figure 4.10 Three-span continuous beam with an overhang (Example 4.6) 

 

Example 4.7: Analyse the frame shown in Figure 4.11(i) using the moment distribution method.   

Solution:  

The given frame does not have any unknown sway degree of freedom. This means, the horizontal 

translation of the column elements (members BD and CE) is prevented owing to the beam element 

AB fixed at A. In case, if the extreme end at A was a roller support, then the frame would translate 

in the horizontal direction resulting in an unknown sway degree of freedom. 

Therefore, the frame problems with no unknown sway degree of freedoms are solved using the 

same procedure adopted for analyzing the beams. 

Step (i): Fixed end moments 

Span AB: 

F

AB

50 4
25.0

8
M

 
    kNm 

(i) Continuous beam an overhanging at the right end 

A 

C B D F G 

E 

H 

135 kN 5 kN 100 kN 10 kN 40 kN/m 

2 m 

4 m 3 m 3 m 2 m 

2 m 1 m 

2I 3I 1.5I I 

(ii) Shear force diagram (in kN) 

100.7 

 

+ + 

 

+ 

 

45.4 

54.6 55.2 

64.8 

5.0 

34.3 

15.0 

(iii) Bending moment diagram (in kNm) 

53.1 

56.19 

20.0 

52.05 
37.6 

48.6 

  
 

+ 

 

+ 
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F

BA

50 4
25.0

8
M

 
    kNm 

Span BC: 
2

F

BC

20 6
60.0

12
M

 
    kNm 

2
F

CB

20 6
60.0

12
M

 
    kNm 

Span CE: 

F

CE

30 4
15.0

8
M

 
    kNm 

F

EC

30 4
15.0

8
M

 
    kNm 

Span DB: 
2

F

DB 2

45 1 2
20.0

3
M

  
    kNm 

2
F

BD 2

45 1 2
10.0

3
M

  
    kNm 

Step (ii): Stiffness and distribution factors 
 

Joint Stiffness ( K ) Distribution factor ( ) 

B 

BA

4 ( )

4

E I
K EI   

BC

4 (1.5 )

6

E I
K EI   

BD

4 (1.5 )
2

3

E I
K EI   

BA
BA

B

0.25
2

K EI

K EI EI EI
   

 
 

BC
BC

B

0.25
2

K EI

K EI EI EI
   

 
 

BD
BD

B

2
0.5

2

K EI

K EI EI EI
   

 
 

C 
CB

4 (1.5 )

6

E I
K EI   

CE

3 (2 )
1.5

4

E I
K EI   

CB
CB

C

0.4
1.5

K EI

K EI EI
   


 

CE
CE

C

1.5
0.6

1.5

K EI

K EI EI
   


 

Step (iii): Moment distribution table 

(a) Similar to the previous examples, the distribution factors and fixed end moments are 

entered in the table. 

(b) Since the extreme end E is hinged, the moment at EC (+15.00) needs to be released. 

Therefore, 15.00 is added at EC, and then 7.50 is carried over to the far end CE. By 

releasing the moment at EC, the moment at EC has become zero, which is the final moment. 
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Therefore, no further operations are carried out at the end EC. The initial moments are 

revised by including the carryover moment. 

(c) At joint B, the unbalanced moment is 25.0 60.0 10.0 25.0     . Therefore, +25.00 is 

required to be applied at B to balance the joint moments. Based on the distribution factors, 

+6.25, +6.25 and +12.5 are entered at the ends BA, BC and BD respectively. Consequently, 

+3.13, +3.13 and +6.25 are carried over to AB, CB and DB respectively.  

(d) Similarly, the unbalanced moment at joint C is 60.0 22.5 37.5    . Therefore, 37.5 is 

distributed between CB and CE as 15.0 and 22.5 respectively. Consequently, 7.5 is 

carried over to the far end BC. No moment is carried over to the far end DB. 

(e) After the first cycle of iteration, the unbalanced moment at the joint B is 7.5. Therefore 

+7.5 is distributed to BA, BC and BD respectively as +1.88, +1.88 and +3.75, and then 

carried over to AB, CB and DB respectively as +0.94, +0.94 and +1.88. Similarly, the 

unbalanced moment at C is +3.13. Therefore, 3.13 is distributed to CB and CE 

respectively as 1.25 and 1.88, and 0.63 is carried over to BC. 

(f) The iteration is continued till the unbalanced moments at the joints B and C become 

negligibly small. 

(g) Now, the end moments are obtained by algebraic summation of all the moments in every 

column.  

 Joint A B C D E 

 End AB BA BC BD CB CE DB EC 

 DF  0.25 0.25 0.50 0.40 0.60   

 FEM 25.00 +25.00 60.00 +10.00 +60.00 15.00 20.00 +15.00 

 Release        15.00 

 COM      7.50   

 Initial 

moments 
25.00 +25.00 60.00 +10.00 +60.00 22.50 20.00 0 

Cycle 1 
Balance   +6.25 +6.25 +12.50 15.00 22.5   

COM +3.13  7.50  +3.13  +6.25  

Cycle 2 
Balance   +1.88 +1.88 +3.75 1.25 1.88   

COM +0.94  0.63  +0.94  +1.88  

Cycle 3 
Balance   +0.16 +0.16 +0.31 0.38 0.56   

COM +0.08  0.19  +0.08  +0.16  

Cycle 4 
Balance   +0.05 +0.05 +0.09 0.03 0.05   

COM +0.02  0.02  +0.02  +0.05  

Cycle 5 
Balance   +0.00 +0.00 +0.01 0.01 0.01   

COM +0.00  0.00  +0.00  +0.00  

 End 

moments 
20.83 +33.33 60.00 +26.66 +47.50 47.50 11.67 0 
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Step (iii): Final moments 

The final bending moment diagram is obtained by superimposing the free bending moment diagram 

with the end moment diagram. The shear force and bending moment diagrams are shown in Figures 

4.11(ii) and 4.11(iii) respectively. 

 

Figure 4.11 Non-sway frame (Example 4.7) 

 

Note: In the numerical examples, the distribution factors are considered only at the joints wherein 

at least two members are connected, and the extreme ends are not considered as joints. 

Theoretically, the extreme ends can also be considered, but it will result in more cycles of iteration 

for convergence.  

(i) Non-sway frame 
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Consider a two-span continuous beam already solved in Example 4.3 as shown in Figure 

4.12(i). The beam has a fixed support at A, an intermediate support at B and a hinged support at C. 

Assume an imaginary span A′A with infinitely rigid (i.e., 
AA'K   ) so that the rotation at A is 

prevented. Similarly, assume an imaginary span CC′ with infinitely flexible (i.e., 
CC' 0K  ) so that 

the rotation at C is freely permitted. Thus, with two imaginary end spans, the supports A and C 

have become joints connecting two members.  

 

Figure 4.12 Beam with imaginary end spans 

Therefore, the distribution factors are calculated as follows. 
 

Joint Stiffness ( K ) Distribution factor ( ) 
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In the moment distribution table, the distribution factors and fixed end moments are entered. The 

unbalanced moments at the joints A, B and C are balanced according to the respective distribution 

factors, and then carried over to the far ends. The iteration is continued until the unbalanced 

moments become negligibly small.  

The end moments exactly match with the solutions obtained in Example 4.3. However, the 

effort required (i.e., number of cycles) to obtain the solution is more when compared with the 

procedure adopted in Example 4.3.  

 Joint A′ A B C C′ 

 End A′A AA′ AB BA BC CB CC′ C′C 

 DF  1.0 0 0.4 0.6 1.0 0  

 FEM   30.00 +30.00 16.88 +5.63   

Cycle 1 
Balance   +30.00 +0.00 5.25 7.88 5.63 0.00  

COM   2.63 +0.00 2.81 3.94    

Cycle 2 
Balance   +2.63 +0.00 +1.13 +1.69 +3.94 +0.00  

COM   +0.56 +0.00 +1.97 +0.84    

Cycle 3 
Balance   0.56 0.00 0.79 1.18 0.84 0.00  

COM   0.39 0.00 0.42 0.59    

Cycle 4 
Balance   +0.39 +0.00 +0.17 +0.25 +0.59 +0.00  

COM   0.08 +0.00 +0.30 +0.13    

Cycle 5 
Balance   0.08 0.00 0.12 0.18 0.13 0.00  

COM   0.06 0.00 0.06 0.09    

Cycle 6 
Balance   +0.06 +0.00 +0.03 +0.04 +0.09 +0.00  

COM   0.01 +0.00 +0.04 +0.02    

Cycle 7 
Balance   0.01 0.00 0.02 0.03 0.02 0.00  

COM   0.01 0.00 0.01 0.01    

Cycle 8 
Balance  +0.01 +0.00 +0.00 +0.01 +0.01 +0.00  

COM   +0.00 0.00 +0.01 +0.00   

 End 

moments 
 32.43 32.43 25.15 25.14 0.00 0.00  
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UNIT SUMMARY  

 Moment distribution method is a displacement method in which the end moments are 

obtained iteratively. 

 Stiffness of an element at a joint is 4EI L  for the far-end fixed, whereas the stiffness is 

3EI L  if the far end is hinged. 

 Distribution factor is the ratio between stiffness of a member and total stiffness of members 

connected at the joint. 

 The summation of distribution factors at a joint is one. 

 Carry over factor is 1 2  for the fixed end, and zero for the hinged end. 

 From the fixed end moments stage, the unbalanced moments at each joint is balanced and 

subsequently carried over to the respective far ends depending on the end conditions. 

 The iteration should be repeated until the unbalanced moment becomes insignificant at 

every joint. 

 Final end moments are obtained by algebraic summation of all the moments (distributed 

and carried over moments) at each joint. 

 Final bending moment diagram is obtained by superposing the free moment diagram with 

the end moment diagram. 

 Beams and frames without any unknown sway degree of freedom can be solved using a 

single the moment distribution table. 
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EXERCISES  

4.1. A two-span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends fixed is 

subjected a mid-span point load of 30 kN in the span AB, and two point loads of 20 kN 

each at every 1 m in the span BC. Draw the shear force and bending moment diagrams. 

4.2. A two-span continuous beam ABC (AB=6 m; BC=3 m) with fixed at A and simply 

supported at C is subjected a uniformly distributed load of 10 kN/m over the span AB, and 

two point loads of 20 kN each at every 1 m in the span BC. Draw the shear force and 

bending moment diagrams. 

4.3. A two span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends simply 

supported is subjected to 30 kN each at the mid-span locations. Analyse the beam for the 

force responses, and draw the shear force and bending moment diagrams. 

4.4. A two-span continuous beam ABC (AB=6 m; BC=3 m) with extreme ends simply 

supported is subjected a uniformly distributed load of 10 kN/m over the span AB, and two 

point loads of 20 kN each at every 1 m in the span BC. Draw the shear force and bending 

moment diagrams. 

4.5. A continuous beam ABCD (span of AB is 4 m with AB 3I I ; span of BC is 3 m with 

BC 2I I ; span of CD is 1 m with CD 1.5I I ) with fixed support at A, intermediate supports 

at B and C, and free at D (i.e., overhanging CD) is subjected a mid-span point load of 30 

kN in the span AB, a uniformly distributed load of 15 kN/m in the span BC, and a point 

load of 5 kN at the tip of span CD. Draw the shear force and bending moment diagrams.  

  



214 | Moment Distribution Method 

 

 
 

QR Code for Moment Distribution Method 

 

NPTEL Lecture: https://www.youtube.com/watch?v=LORmHAC_vPo 
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UNIT SPECIFICS  

This unit discusses the following aspects. 

 Different types of truss structures 

 Analysis of simples trusses by the method of joints 

 Analysis of simples trusses by the method of sections 

RATIONALE  

In structures with large spans, providing beams as major transverse load carrying elements becomes 

uneconomical. In such situations, trusses are preferred. The truss is composed of short and straight 

discrete elements arranged into triangulated patterns connected at their ends to form a stable 

configuration. This chapter presents various methods for analyzing simple trusses for the force 

response. 

UNIT OUTCOMES 

List of outcomes of this unit is as follows. 

U5-O1: Importance of truss structures 

U5-O2:  Different types of trusses 

U5-O3:  Assumptions for analyzing the trusses  

U5-O4: Analysis of simple trusses using the method of joints  

U5-O5:  Analysis of simple trusses using the method of sections 

Mapping of Unit-5 Outcomes with Course Outcomes * 

 CO-1 CO-2 CO-3 CO-4 CO-5 

U5-O1 1 1 1 3 1 

U5-O2 1 1 1 1 1 

U5-O3 1 1 2 1 2 

U5-O4 1 1 2 2 3 

U5-O5 1 1 2 2 3 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation)  

Simple Trusses 5 
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5.1 Introduction 

A truss is an assemblage of straight members arranged in a triangle or a combination of triangles, 

and connected by means of pins for transmitting the externally applied loads by developing axial 

forces in the members. Mostly, trusses are constructed using structural steel or aluminum shapes 

or wood struts with bolted or welded connections. Timber trusses were built for function (rather 

than the architectural fancy) in the past, but nowadays they are replaced by metal trusses owing to 

the structural efficiency. Trusses are widely used in many applications such as industrial structures, 

bridges, roofs of buildings, towers and space stations. The top and bottom truss members are called 

chords and the members between the chords are called web members. The compressive web 

members are called struts and tensile web members are called ties. 

5.2 Types of Trusses 

The basic shape of a truss is a triangle formed by three members connected at the common joints. 

Hence, the triangle arrangement with three members and three joints is a rigid structure. When 

another two members are connected to two of the joints forming another triangle, the structure 

becomes a five-member rigid structure. Therefore, the whole structure is suitably built-up from the 

basic triangle by adding two members (sometimes one member is sufficient, by keeping two 

existing members as common). This kind of arrangement makes the structure rigid and internally 

stable. Moreover, when the structures are supported in such a way that all the reactions are neither 

parallel nor concurrent, the external stability is also achieved.  

If all the members of a truss lie in one plane, the structure is called a plane truss. Similarly, if 

the configuration of the structure encloses three-dimensional space, the structure is called a space 

truss. In reality, planar trusses are not two-dimensional; this means that the existence of a dimension 

normal to the plane should be realized. Because, the member cross sections carry the third 

dimension, and also the physical joining of the members involves a layered nonplanar assemblage 

of members. However, the minor eccentricities of the member axes with respect to the plane of the 

structure are unimportant in the analysis of the truss structure as a whole. On the other hand, when 

the truss structures enclose a three-dimensional space, it is appropriate to consider the full spatial 

interconnection of the members when analyzing structures such as towers, complicated roof 

systems and aerospace structures. However, in many cases such as bridges structures and simple 

roof systems, the framework can be subdivided into planar components for simplifying the analysis 

procedure without compromising the accuracy of the results.  

Depending on the overall configuration, two categories of trusses namely the flat trusses (i.e., 

with parallel chord or girders) and pitched/common trusses (i.e., for sloped roof) can be seen in 

practice. Different types of truss structures are shown in Figure 5.1. The choice of the truss is 

mainly governed by many factors such as the span of the structure, main purpose of the structure, 

topographical conditions, economy etc.  
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Figure 5.1 Common types of trusses  

5.2.1 Classification of Plane Trusses 

Planar truss structures are classified as simple, compound and complex trusses. A simple truss is a 

plane truss which begins with a basic triangular shape and can be expanded by adding two members 

and a joint. The simple trusses do not need to be made entirely of triangles, nevertheless, the non-

triangular cells do not ensure the stability conditions in some cases. A compound truss is formed 

by either modifying the simple truss by readjusting the members or by combining simple trusses. 

The compound trusses are commonly adopted in long-span bridges. A complex truss adopts a 

general layout of members which is different from the simple and compound trusses. It often 

contains overlapping members (i.e., no joints at many apparent intersections of members). Analysis 

of such structures is complicated as the equilibrium equations are generally coupled. Examples of 

simple, compound and complex truss structures are shown in Figure 5.2. 

King-post truss Queen-post truss 

Fink truss Fink truss 

Howe truss Howe truss 

Pratt truss Pratt truss 

Warren truss Warren truss 

North light truss North light truss 
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Figure 5.2 Classification of plane trusses  

5.3 Analysis of Trusses 

The truss structures are analysed for determining the member forces. The real truss structures are 

idealized to perform the analysis by making the following assumptions. 

(i) The truss members are straight between the joints. 

(ii) The loads and reactions lie in the plane of the truss and applied at the joints only. 

(iii) The centroidal axis of each member coincides with the line connecting the centre of 

adjacent joints. 

(iv) The truss members are connected together with frictionless pins so as to facilitate the 

members to rotate freely at the joints.  

(v) The deformation of a truss under applied loads caused by change in length of the 

individual members is small enough to cause appreciable change in the overall shape and 

dimensions of the truss. 

Since the members transmit the applied loads through axial action, the two end forces must be 

collinear and opposite to each other for equilibrium, making the nature of forces in each member 

either tension or compression. The representation of member forces (also called bar forces) is 

illustrated in Figure 5.3. The simple truss shown in Figure 5.3(i) is decomposed into joints and 

members to realize the action of joints on the member and the subsequent reaction of the member 

on the joints as illustrated in Figure 5.3(ii). On an isolated member, the tension in member is 

represented by inward arrows from the joints, and the compression in member is represented by 

outward arrows to the joints as shown in Figure 5.2(iii). Thus, the direction of forces away from 

the joint indicates tensile force, while the direction towards the joint indicates compressive force in 

the members as indicated in Figure 5.3(iv).  

(i) Simple trusses 

(ii) Compound trusses 

(iii) Complex trusses 
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Figure 5.3 Representation of member forces in truss analysis  

In truss analysis, a tension (T) is designated as a positive bar force while a compression (C) is 

a negative bar force. First, the free-body diagram is isolated in which the desired bar forces are 

exposed as unknowns. The directions of unknown forces are assumed to be positive (i.e., tension) 

on the cut face, and the static equilibrium equation equations are applied to solve for the unknown 

bar forces. If the solution produces a positive force, the assumed direction is correct (i.e., tension). 

On the other hand, a negative force indicates that the assumed direction is incorrect, hence the 

member is in compression. This means that the numerical value is correct regardless of the sign. 

5.3.1 Stability and Determinacy of Trusses 

The fundamental configuration (i.e., triangle) of a planar truss with pin joints at the connections is 

internally stable. This means, the configuration does not get modified abruptly before or after 

application of external loads. When this configuration is supported externally by providing a hinged 

support at any one joint and a roller support at another joint, the structure becomes externally just-

rigid. This essentially means, with one hinged and one roller supports, minimum three reaction 

components are introduced to satisfy the requirement of equilibrium conditions. As the only 

internal force in each member is the axial force, the total number of unknown forces is equal to six 

(i.e., three member forces and three reactions). However, each joint offers two equilibrium 

equations  0xF   and 0yF  . If m  denotes the number of members and r  denotes the 

number of reaction components (at the supports), and j  denotes the number of joints, then 

2m r j   for the basic configuration.  

W 

(i) Simple truss  (ii) Truss is decomposed into 

joints and members  

W 

C C 

T 

(iv) Nature of forces represented by 

member action on its joints 

W 

C C 

T 

(iii) Forces on isolated members and 

their final representation 

(tension) 

(compression) 

T 

C 
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A truss possessing just sufficient number of members to maintain its stability and equilibrium 

under any system of forces applied at joints is called a statically determinate and stable truss. This 

means that the condition 2m r j   is satisfied. There are many criteria based the composition of 

m, r, and j; primarily the degree of static indeterminacy is obtained.  

DSI = (unknown forces)  (known forces) ( ) 2m r j    (5.1) 

Eq. (5.1) may not clearly indicate the condition of trusses. If r is taken as the least number of 

reaction components required for external stability and 
ar  is the actual number of reaction 

components, then the following criteria can be obtained. 

ar r    the truss is statically unstable externally (Figure 5.4(i)) 

ar r    the truss is statically determinate externally (Figure 5.4(ii)) 

ar r    the truss is statically indeterminate externally (Figure 5.4(iii)) 

Therefore, the conditions 
ar r  are necessary but not sufficient conditions for statical 

classification; hence the reactions must be properly arranged to ensure stability. 

 

Figure 5.4 External classification of truss  

For internal classification, let the condition 2m r j   be rewritten as 2m j r  . In this form, 

m is the number of members required to form an internally statically determinate truss. If 
am  is the 

actual number of members in the truss, then the following criteria can be obtained. 

am m    the truss is statically unstable internally (Figure 5.5(i)) 

am m    the truss is statically determinate internally (Figure 5.5(ii)) 

am m    the truss is statically indeterminate internally (Figure 5.5(iii)) 

Therefore, if 
am m , the truss is definitely unstable, but if 

am m , it does not necessarily mean that 

the truss is stable. This may be due to improper arrangement of members to ensure internal stability. 

Such trusses are said to have critical form. 

(i) statically unstable 

externally 

ra < r ra = r 

(ii) statically determinate 

externally 

(iii) statically indeterminate 

externally 

ra > r 
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Figure 5.5 Internal classification of truss  

Based on the degree of static indeterminacy, if 0DSI   the truss is termed as just-rigid; if 0DSI   

the truss is under-rigid; and 0DSI   the truss is over-rigid. Figure 5.6 shows a few examples of 

trusses which are statically determinate (i.e., 0DSI  ), but unstable. The unstable structures cannot 

function as load transfer system, and hence cannot be solved for the force or displacement 

responses.  

 

Figure 5.6 Examples of unstable trusses with DSI=0 

Figure 5.7 shows various stable trusses with the details of static indeterminacy. When 0DSI  , the 

trusses are statically indeterminate, hence the equilibrium equations alone are inadequate to 

determine the member forces. 

 

(i) statically unstable 

internally 

ma < m 

(ii) statically determinate 

internally 

ma = m 

(iii) statically indeterminate 

internally 

ma > m 

m=4; r=4; j=4 

DSI=0 
m=6; r=2; j=4 

DSI=0 

m=9; r=3; j=6 

DSI=0 
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Figure 5.7 Examples of stable trusses  

5.3.2 Methods of Analysis 

There are several methods available to analyse the truss structures, such as 

(i) Method of joints 

(ii) Method of sections 

(iii) Tension coefficient method 

(iv) Graphical method 

(v) Principle of virtual displacement 

In the method of joints, the free-body of an isolated single joint is solved using the equilibrium 

equations. In the method of section, the free-body of a complete subassembly consisting of several 

joints and members is solved using the equilibrium equations. The tension coefficient method is 

similar to the method of joints, but formulated in an alternative form especially suitable for solving 

space trusses. In the graphical method, the bar forces are determined by drawing a series of force 

polygons, one for each joint. The principle of virtual displacement is based on the concepts of 

virtual work when the body is subjected to a small imaginary displacement. 

5.4 Method of Joints 

Truss is assumed to be composed of a series of members and joints. Any portion of a structure must 

be in a state of equilibrium is the basis for all analysis techniques directed at determining forces in 

truss members. First, the support reactions are obtained by considering the rigid-body equilibrium 

conditions (i.e., ∑𝐹𝑥 = 0 , ∑𝐹𝑦 = 0 and ∑𝑀 = 0) of the whole structure. Each joint is isolated, 

and the system of forces acting at the joint is defined by the unknown forces (i.e., member forces 

at the joint) and by the known forces (i.e., external loads and support reactions), if available. The 

actual direction of the known forces is used, and the nature of the unknown forces is arbitrarily 

considered to be the tension. Since all the forces in the joint act through the same point (called 

m=11; r=3; j=6 

DSI=2 

m=10; r=3; j=6 

DSI=1 

m=9; r=3; j=6 

DSI=0 

m=18; r=3; j=9 

DSI=3 
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concurrent system), only two equilibrium equations (i.e., ∑𝐹𝑥 = 0 and ∑𝐹𝑦 = 0) are valid, and the 

moment equilibrium (i.e., ∑𝑀 = 0) is not a concern. The unknown forces are determined by 

applying the equilibrium equations (i.e., ∑𝐹𝑥 = 0 and ∑𝐹𝑦 = 0). In a joint, since only two 

conditions are available, no more than two unknowns can be solved. In general, the truss analysis 

is started at a support where two members meet, because the support reactions are already known, 

and only two member forces are unknown. Once all the forces acting at the initial point have been 

found, the adjacent joint is considered for the analysis.  

 

5.4.1 Numerical Examples 

Example 5.1: Analyse the truss shown in Figure 5.8 for the bar forces.  

 

Figure 5.8 Three-member truss (Example 5.1)  

Solution:  

The free-body diagram of the whole structure is shown in Figure 5.9(i). First, the truss needs to be 

checked for the determinacy. There are three members (AB, BC and CA), three joints (A, B and 

C), and three reactions (𝑉A, 𝑉B and 𝐻A). Therefore, the degree of static indeterminacy is 

2 3 3 2(3) 0DSI m r j       , hence the structure is statically determinate. The support 

reactions are determined by applying the equilibrium conditions. 

0xF    A 10 0H     

 A 10.0H   kN 

0yF    A B 30 0V V     

A 0M    B 8 30 4 10 3 0V         

 B 18.75V   kN & A 11.25V   kN 

The internal forces are marked as AB BAF F , AC CAF F , BC CBF F  in the free-body diagram with 

the nature of internal forces assumed as tension (i.e., the arrows are placed for the members at the 

ends pointing away from the joints) as shown in Figure 5.9(ii). 

Joint A is isolated as shown in Figure 5.9(iii), and the equilibrium equations are applied. The 

inclined forces (i.e., forces in the inclined members) are resolved into horizontal and vertical 

directions while applying the equilibrium conditions. 

30 kN 

10 kN 

4 m 

3 m 

A B 

C 

4 m 
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0xF    AB AC10.0 cos(36.9) 0F F       

0yF    AC11.25 sin(36.9) 0F      AC 18.7F    kN 

Therefore, AB10.0 ( 18.7) cos(36.9) 0F        AB 25.0F    kN 

The sign of ACF  is negative; hence compression. However, the sign should not be changed 

until the analysis is completed for all the joints.  

Joint C is isolated as shown in Figure 5.9(iv), and the equilibrium equations are applied. 

0xF    BA BC cos(36.9) 0F F      

AB BC cos(36.9) 0F F      BC25.0 cos(36.9) 0F      BC 31.3F    kN 

The sign of BCF  is negative; hence compression. Alternatively, the force BCF  can be  obtained by 

considering the joint C instead of Joint B as follows. 

0xF    CA CB10.0 cos(36.9) cos(36.9) 0F F        

AC CB10.0 cos(36.9) cos(36.9) 0F F       

  CB10.0 18.7 cos(36.9) cos(36.9) 0F         CB BC31.3F F    

 

Figure 5.9 Truss analysis (Example 5.1)  
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Final member forces: 

AB BA 25.0F F    kN (Tension) 

AC CA 18.7F F    kN (Compression) 

BC CB 31.3F F    kN (Compression) 

The member forces are represented as shown in Figure 5.9(v). 

 

Example 5.2: Analyse the truss shown in Figure 5.10 for the bar forces.  

 

Figure 5.10 Nine-member truss (Example 5.2)  

Solution:  

The free-body diagram of the whole structure is shown in Figure 5.11(i). First, the truss needs to 

be checked for the determinacy.  

2 9 3 2(6) 0DSI m r j       , hence the structure is statically determinate. The support 

reactions are determined by applying the equilibrium conditions. 

0xF    A 10 0H     

 A 10.0H   kN 

0yF    A C 30 40 20 0V V       

A 0M    C 8 20 8 40 4 30 0 10 3 0V             

 C 43.75V   kN & A 46.25V   kN 

The nature of the internal forces is assumed as tension (i.e., the arrows are placed for the members 

at the ends pointing away from the joints) as shown in the free-body diagram. 

Joint A is isolated as shown in Figure 5.11(ii), and the equilibrium equations are applied.  

0xF    AB10.0 0F     

 AB 10.0F    kN 

0yF    AF46.25 0F     

 AF 46.25F    kN 

The sign of AFF  is negative; hence compression. However, the sign should not be changed until 

the analysis is completed for all the joints. 
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Now, Joint B cannot be considered as an isolated joint for determining the next set of internal 

forces, because there are member forces in which four forces are unknown.  

Therefore, the joint C is isolated as shown in Figure 5.11(iii), and the equilibrium equations are 

applied. 

0xF    CB 0F    

0yF    CD43.75 0F     

 CD 43.75F    kN 

The sign of CDF  is negative; hence compression.  

The joint D is isolated as shown in Figure 5.11(iv), and the equilibrium equations are applied. 

0xF    DE DB cos(36.9) 0F F      

0yF    DC DB20.0 sin(36.9) 0F F       

Therefore, DB20.0 ( 43.75) sin(36.9) 0F        

 DB 40.0F    kN and DE 31.6F    kN 

The sign of DEF  is negative; hence compression.  

The joint E is isolated as shown in Figure 5.11(v), and the equilibrium equations are applied. 

0xF    ED EF 0F F    EF( 31.6) 0F     

 EF 31.6F    kN 

0yF    EB40.0 0F     

 EB 40.0F    kN 

The sign of EFF  and EBF  is negative; hence compression.  

The joint F is isolated as shown in Figure 5.11(vi), and the equilibrium equations are applied. 

0xF    FE FB10.0 cos(36.9) 0F F      

FB10.0 31.6 cos(36.9) 0F       

 FB 27.0F    kN 

0yF    FA FB30.0 sin(36.9) 0F F       

FA30.0 27.0 sin(36.9) 0F       

 FA 46.2F    kN  

The force FAF was already obtained by considering Joint A; same result is obtained while 

considering Joint F. 

Table 5.1 presents the forces along with the nature of all the members. The member forces are 

represented as shown in Figure 5.11(vii). 
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Table 5.1 Member forces (Example 5.2)  

Member Force (kN) Nature 

AB 10.0 Tension 

BC 0 - 

CD 43.8 Compression 

DE 31.6 Compression 

EF 31.6 Compression 

AF 46.3 Compression 

BD 40.0 Tension 

BE 40.0 Compression 

BF 27.0 Tension 

 

Figure 5.11 Truss analysis (Example 5.2)  
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Example 5.3: Analyse the truss shown in Figure 5.12 for the bar forces.  

 

Figure 5.12 Seven-bar truss (Example 5.3)  

Solution:  

The free-body diagram of the whole structure is shown in Figure 5.13(i). First, the truss needs to 

be checked for the determinacy.  

2 7 3 2(5) 0DSI m r j       ; hence the structure is statically determinate. The support 

reactions are determined by applying the equilibrium conditions. 

0xF    A E 0H H     

0yF    E 30 15 0V      

 E 45.0V   kN 

A 0M    E E0 3 30 4 15 8 0V H          

 E 80.0H    kN & A 80.0H    kN 

The sign of EH  is negative. Therefore, the assumed direction of the horizontal reaction at E is not 

correct. While considering the joint E for equilibrium, either the direction of the reaction can be 

updated (i.e., away from the joint) with the positive magnitude or retained (i.e., towards the joint) 

with the negative magnitude. 

As three unknown forces are there at joint A, it cannot be considered as the first isolated joint 

for the force equilibrium.  Therefore, the joint C is considered first. 

Joint C (Figure 5.13(ii)): 

0xF    CB CD cos(20.6) 0F F      

0yF    CD15.0 sin(20.6) 0F      

 CD 42.6F    kN and CB 39.9F    kN 

Joint B (Figure 5.13(iii)): 

0xF    BA BC 0F F     BA 39.9 0F     

 BA 39.9F    kN 

0yF    BD 30.0 0F     

  BD 30.0F    kN  
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30 kN 15 kN 



Theory of Structures| 229 

 

Joint A (Figure 5.13(iv)): 

0xF    AB AD80.0 cos(20.6) 0F F       

 AD80.0 39.9 cos(20.6) 0F       

 AD 42.8F    kN 

0yF    AE AD sin(20.6) 0F F      

 AE 42.8 sin(20.6) 0F      

 AE 15.0F    kN  

Joint E (Figure 5.13(v)): 

0xF    ED80.0 sin(69.4) 0F      

 ED 85.5F    kN 

0yF    EA ED45 cos(69.4) 0F F       

 EA45 85.5 cos(69.4) 0F       

 EA 15.0F    kN  

The force EAF  was already obtained by considering Joint A; same result is obtained while 

considering Joint E. 

Table 5.2 presents the forces along with the nature of all the members. The member forces are 

represented as shown in Figure 5.13(vi). 

Table 5.2 Member forces (Example 5.3)  

Member Force (kN) Nature 

AB 39.9 Compression 

BC 39.9 Compression 

CD 42.6 Tension 

DE 85.5 Tension 

AE 15.0 Tension 

AD 42.8 Compression 

BD 30.0 Tension 
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Figure 5.13 Truss analysis (Example 5.3)  

 

Example 5.4: Analyse the truss shown in Figure 5.14 for the bar forces.  

 

Figure 5.14 Eleven-bar truss (Example 5.4)  
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Solution:  

The free-body diagram of the whole structure is shown in Figure 5.15(i). Both vertical and 

horizontal reactions exist at A. The roller support at D offers resistance in one direction that is 

normal to the plane (i.e., 30 to the horizontal plane). Therefore, the reaction at D (i.e., DR ) is acting 

normal to the inclined plane. The components of the reaction DR  are resolved in horizontal and 

vertical directions as D D sin30H R  and D D cos30V R  respectively. Similarly, the inclined load 

applied at G is resolved into both horizontal and vertical directions as shown in Figure 5.15(ii). 

The degree of static indeterminacy, 2 11 3 2(7) 0DSI m r j       ; hence the structure is 

statically determinate. The support reactions are determined by applying the equilibrium 

conditions. 

0xF    A D sin30 10sin30 5.0 0H R       

0yF    A D cos30 10cos30 20 0V R       

A 0M    D cos30 9 5 2.6 20 7.5 10cos30 1.5 10sin30 2.6 0R             

D 24.247R   kN 

A 2.124H    kN  

A 7.662V    kN 

Joint A (Figure 5.15(iii)): 

0xF    AB AG2.1 cos(60) 0F F       

0yF    AG7.7 sin(60) 0F      

AG 8.9F    kN 

AB 2.3F    kN 

Joint D (Figure 5.15(iv)): 

0xF    DC DE cos(60) 12.1 0F F       

0yF    DE21.0 sin(60) 0F      

DE 24.2F    kN  

DC 0F   kN 

Joint E (Figure 5.15(v)): 

0xF    EF EC EDcos(60) cos(60) 5.0 0F F F         

0yF    EC ED20.0 sin(60) sin(60) 0F F        

EC 1.1F    kN  

EF 7.7F    kN 
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Joint C (Figure 5.15(vi)): 

0xF    CB CF CE CDcos(60) cos(60) 0F F F F         

0yF    CF CEsin(60) sin(60) 0F F       

CF 1.1F    kN  

CB 1.1F    kN 

Joint B (Figure 5.15(vii)): 

0xF    BA BG BF BCcos(60) cos(60) 0F F F F         

 BF BG 2.4F F   

0yF    BG BFsin(60) sin(60) 0F F       

 BF BG 0F F    

BF 1.2F    kN 

BG 1.2F    kN 

Joint F (Figure 5.15(viii)): 

0xF    FG FB FC FEcos(60) cos(60) 0F F F F         

FG 8.9F    kN 

The member forces determined are presented in Table 5.3, and represented as shown in Figure 

5.15(ix). 

Table 5.3 Member forces (Example 5.4)  

Member Force (kN) Nature 

AB 2.3 Tension 

BC 1.1 Tension 

CD 0 Tension 

DE 24.2 Compression 

EF 7.7 Compression 

FG 8.9 Compression 

GA 8.9 Compression 

BF 1.2 Tension 

BG 1.2 Compression 

CE 1.1 Tension 

CF 1.1 Compression 
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Figure 5.15 Truss analysis (Example 5.4)  

 

Note: While resolving the inclined forces in horizontal and vertical directions, it is convenient to 

use only “cosine”. For example, consider a force system shown in Figure 5.16. 

 

Figure 5.16 System of inclined forces  
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When the force 1F  is resolved in horizontal and vertical directions, the horizontal component 

becomes 1 cos20F , while the vertical component is 1 sin 20F . Instead, the vertical component can 

be written as 1 1sin(90 20) sin70F F  . Similarly, for the force 2F , the horizontal component is 

2 cos35F , and the vertical component is 2 cos55F . Thus, if R  is the “rotating angle” required to 

keep the inclined force in either horizontal or vertical positions, then the corresponding component 

is Rcos . When the force 1F  is rotated 20 in clockwise direction, the force acts in horizontal, 

directing towards the right direction ( 1 cos20xF F ). When the same force 1F  is rotated 70 in anti-

clockwise direction, the force acts in vertical downward direction ( 1 cos70yF F ). Therefore, the 

resolution of the forces can be done in many ways. 

Option 1:  

1 2 3 4cos20 cos35 cos50 cos30xF F F F F      

1 2 3 4sin 20 sin35 sin50 sin30yF F F F F      

Option 2:  

1 2 3 4cos20 cos35 cos50 cos30xF F F F F      

1 2 3 4cos70 cos55 cos40 cos60yF F F F F      

Option 3:  

1 2 3 4cos160 cos35 cos50 cos150xF F F F F      

1 2 3 4cos110 cos125 cos40 cos60yF F F F F      

In option 3, the inclined forced are rotated in such a way that the arrows lead the positive directions 

(i.e., towards right in horizontal direction, and upwards in vertical direction).  

5.5 Method of Sections  

In the method of joints, the elemental portions of the truss considered for equilibrium were the 

joints. All the joints are considered one by one until all the member forces of the truss are 

determined. In the method of sections (also called method of moments), the complete subassembly 

consisting of several joints and members is considered for the equilibrium. An imaginary cut is 

made to partition the truss into two subassemblies, each of which is in equilibrium under the action 

of external forces (i.e., applied loads and reactions) and internal forces (i.e., member forces in the 

cut).  Since the forces acting on the subassembly form a coplanar, but non-concurrent and non-

parallel force system, the moment equilibrium condition (i.e., ∑𝑀 = 0) should also be used along 

with the translational equilibrium conditions (i.e., ∑𝐹𝑥 = 0 and ∑𝐹𝑦 = 0). This means that all the 

three equilibrium equations are available; hence a maximum of three unknown forces cutting across 

three members can be determined in a single subassembly.  
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Thus, conceptually, the method of joints can be considered in terms of a section line around 

each joint, wherein the moment equilibrium condition (i.e., ∑𝑀 = 0) becomes null-and-void 

owing to the concurrent nature. In numerical examples, the method of joints is preferred when all 

the member forces in a truss are to be determined, whereas the method of sections is particularly 

useful when only a selected member forces are to be determined.  

 

5.5.1 Numerical Examples  

Example 5.5: Analyse the truss shown in Figure 5.17 for the bar forces. [Same as Example 5.1] 

 

Figure 5.17 Three-member truss (Example 5.5)  

Solution:  

This example is already solved using the method of joints. The free-body diagram of the whole 

structure with the assumed nature of member forces is shown in Figure 5.18(i). The support 

reactions are computed by applying the equilibrium conditions on the whole structure. 

0xF    A 10 0H     

 A 10.0H   kN 

0yF    A B 30 0V V     

A 0M    B 8 30 4 10 3 0V         

B 18.75V   kN  

A 11.25V   kN 

The truss is cut into two subassemblies by making an imaginary section 1-1 as shown in Figure 

5.18(ii). The subassembly on the left side of the imaginary section 1-1 is considered for the member 

forces which are lying across the cut (i.e., ABF  and ACF ) as shown in Figure 5.18(iii). Since the 

subassembly is in equilibrium, the moment of all forces in the subassembly about any point on the 

plane should be equal to zero (i.e, moment equilibrium condition).  

First, the moment equilibrium condition is applied at point B, and then applied at point C (it 

need not be at the locations of joints; it can be even outside the structure configuration, but it is 

convenient to consider the joint locations). There are four forces in the subassembly (i.e., 10.0 kN, 

11.25 kN, ABF  and ACF ). Therefore, the algebraic summation of the moments of these forces (i.e., 

force multiplied by the respective normal distance up to B) should be considered. 
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 B 0M    AC AB11.25 8 10 0 4.8 0 0F F           

 AC 18.75F    kN  

All clockwise moments are considered as positive and anti-clockwise moments are considered 

as negative. The forces 10 kN and ABF  will pass through the point B; hence the perpendicular 

distance is zero. The perpendicular distance from the axis of force ACF  to the point B is 4.8 m as 

shown in Figure 5.18(iii). 

Now, the moment equilibrium condition is applied at point C.  

C 0M    AC AB11.25 4 10 3 0 3 0F F           

 AB 25.0F    kN  

With the section 1-1, the forces in members across the cut are determined. Therefore, the truss is 

now considered for another new section in such a way that the imaginary cut is passing through the 

members whose forces are yet to be determined. 

The truss is cut into two subassemblies by making an imaginary section 2-2 as shown in Figure 

5.18(iv). The subassembly on the right side of the imaginary section 2-2 is considered for the 

member forces that are lying across the cut (i.e., BAF  and BCF ) as shown in Figure 5.18(v), in which 

BAF  is already determined. Therefore, the moment equilibrium condition is applied at point A.  

A 0M    AB BC18.75 8 0 4.8 0F F        

 BC 31.25F    kN  

Final member forces: 

AB BA 25.0F F    kN (Tension) 

AC CA 18.75F F    kN (Compression) 

BC CB 31.25F F    kN (Compression) 

The member forces are represented as shown in Figure 5.18(vi). 
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Figure 5.18 Truss analysis (Example 5.5)  
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Example 5.6: Analyse the truss shown in Figure 5.19 for the bar forces. [Same as Example 5.2] 

 

Figure 5.19 Nine-member truss (Example 5.6)  

Solution:  

This example is already solved using the method of joints. The free-body diagram of the whole 

structure with the assumed nature of member forces is shown in Figure 5.20(i). The support 

reactions are computed by applying the equilibrium conditions on the whole structure. 

0xF    A 10 0H     

 A 10.0H   kN 

0yF    A C 30 40 20 0V V       

A 0M    C 8 20 8 40 4 30 0 10 3 0V             

 C 43.75V   kN & A 46.25V   kN 

The truss is cut into two subassemblies by making an imaginary section 1-1 as shown in Figure 

5.20(ii). The subassembly on the left side of the imaginary section 1-1 is considered for the member 

forces ABF , FBF  and FEF ) as shown in Figure 5.20(iii). Since the subassembly is in equilibrium, all 

three equilibrium conditions can be applied.  

0xF    AB FE FB10 10.0 cos36.9 0F F F         

0yF    FB46.25 30 sin36.9 0F       

 FB 27.0F    kN 

B 0M    FE46.25 4 10 3 30 4 3 0F          

 FE 31.6F    kN 

By substituting FBF  and FEF  in 0xF  ;  

AB 10.0F    

It is not necessary to apply all three equilibrium conditions (i.e., ∑𝐹𝑥 = 0 , ∑𝐹𝑦 = 0 and 

∑𝑀 = 0) to solve for three unknown member forces that are exposed in the section 1-1. 

Alternatively, all the three forces can be determined by applying only moment equilibrium 

condition at three locations separately. 
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B 0M    FE46.25 4 10 3 30 4 3 0F          

 FE 31.6F    kN 

C 0M    FE FB46.25 8 10 3 30 8 3 2.4 0F F            

 FB 27.0F    kN 

E 0M    AB FB46.25 4 10.0 3 3 30 4 2.4 0F F            

 AB 10.0F    

Now, the truss is cut into two subassemblies by making an imaginary section 2-2 as shown in Figure 

5.20(iv). The subassembly on the right side of the imaginary section 2-2 is considered for the 

member forces CBF , DBF  and DEF  as shown in Figure 5.20(v). Since the subassembly is in 

equilibrium, all three equilibrium conditions can be applied.  

0xF    CB DE DB cos36.9 0F F F       

0yF    DB43.75 20 sin36.9 0F       

 DB 40.0F    kN 

B 0M    DE43.75 4 20 4 3 0F         

 DE 31.6F    kN 

By substituting DBF  and DEF  in 0xF  ; 

CB 0F   

Now, the truss is cut into two subassemblies by making an imaginary section 3-3 as shown in Figure 

5.20(vi). The subassembly above the imaginary section 3-3 exposes the member forces BEF , BFF , 

BDF , and CDF  as shown in Figure 5.20(vii).  

Since EFF  and BDF  are already obtained, the subassembly can be considered for the remaining 

three forces. Moment equilibrium condition is applied at B and C.  

B 0M    EF DC3 20 4 4 0F F         

 DC 43.8F   kN 

C 0M    DB EB EF2.4 40 4 4 3 0F F F           

 EB 40.0F    kN 

Again, the truss is cut into two subassemblies by making an imaginary section 4-4 as shown in 

Figure 5.20(viii). The subassembly above the imaginary section 4-4 exposes the member forces 

AFF , and ABF  as shown in Figure 5.20(ix).  

Since ABF  is already obtained, the subassembly can be considered for the remaining force. 

Moment equilibrium condition is applied at B.  

B 0M    AF 4 46.25 4 0F       

 AF 46.25F    kN 
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Figure 5.20 Truss analysis (Example 5.6)  
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Alternatively, the vertical force equilibrium condition can be applied. 

0yF    AF 46.25 0F     

 AF 46.25F    kN 

The member forces are represented as shown in Figure 5.21. 

 

Figure 5.21 Member forces in kN (Example 5.6)  

 

Example 5.7: Determine the member forces of BC, BF and GF in the truss shown in Figure 5.22.  

 

Figure 5.22 Eleven-member truss (Example 5.7)  

Solution:  

The free-body diagram of the whole structure is shown in Figure 5.23(i). The truss is statically 

determinate with three support reactions ( AH , AV  and DR ) in which is acting normal to the inclined 

plane. The components of the reaction DR  are resolved in horizontal and vertical directions as 

D D sin30H R  and D D cos30V R  respectively. Similarly, the inclined load applied at G is resolved 

into both horizontal and vertical directions as shown in Figure 5.23(i). 

The support reactions are determined by applying the equilibrium conditions. 

0xF    A D sin30 10sin30 5.0 0H R       

0yF    A D cos30 10cos30 20 0V R       

A 0M    D cos30 9 5 2.6 20 7.5 10cos30 1.5 10sin30 2.6 0R             

 D 24.247R   kN, A 2.124H    kN & A 7.662V    kN 

30 

10 

40 20 

A 

E 

B 
C 

D 
F 

46.3 43.8 

10.0 

(+10.0)  

(
4
6

.3
) 

 

(0)  

(
4
3

.8
) 

 

(31.6)  (31.6)  

(
4
0

.0
) 

 

30 

5 kN 

30 
20 kN 

3 m 3 m 3 m 

E 

A 

B C D 

F G 



242 | Simple Trusses 

 

Since the forces in the selected members need to be obtained, the imaginary section should 

pass through those members. In one imaginary section, a maximum of three members can be cut, 

as three equilibrium conditions can be applied. Accordingly, the truss is cut into two subassemblies 

by making an imaginary section 1-1 such that the section exposes the members whose forces are to 

be determined as shown in Figure 5.23(ii).  

The segment on the left side of the imaginary section 1-1 is considered for determining the 

member forces (i.e., BCF , BFF  and GFF ) as shown in Figure 5.23(iii). The nature of forces is assumed 

to be tension for the members BC, BF and GF. Since the subassembly is in equilibrium, all three 

equilibrium conditions can be applied.  

0xF    GF BC BF2.1 cos60 10cos60 0F F F        

0yF    BF7.7 10sin60 sin60 0F       

 BF 1.1F    kN 

F 0M    BC7.7 4.5 2.1 2.6 10cos30 3 2.6 0F           

 BC 1.2F    kN 

By substituting BFF  and BCF  in 0xF  , GF 8.9F    kN 

 

Figure 5.23 Truss analysis (Example 5.7)  

Note: If this example is to be solved using the method of joints for determining the specific member 

forces (i.e., BCF , BFF  and GFF ), the separated joints A, B and G should be sequentially solved. 
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5.6 Simplifying Conditions 

Sometimes a qualitative inspection of the joints enables the analyst for quick determination of 

member forces, especially for identifying the zero-force members. If a joint has only two non-

collinear members and there is no external load or support reaction at that joint, then those two 

members are zero-force members. Similarly, if a joint has only three members (with no external 

load or reaction), in which two members are collinear, then the third non-collinear member is a 

zero-force member. In truss structures, the zero-force members are used to increase stability and 

rigidity of the truss, and to provide support for various different loading conditions. Consider a 

truss as shown in Figure 5.24. 

 

Figure 5.24 Qualitative inspection of a truss  

A simple inspection of the truss structure shown in Figure 5.24 reveals the following. 

(i) Joint B: BD 0F   (i.e., the vertical force equilibrium condition will consist of only BDF ; the 

third non-collinear member in a joint that has only three members) 

(ii) Joint B: BA BCF F  (i.e., by the horizontal force equilibrium condition) 

(iii) Joint D: DC 0F   (i.e., the horizontal force equilibrium condition will consist of only DC )F  

(iv) Joint D: DE DF V  (i.e., by the vertical force equilibrium condition; if DV  is upwards then 

DEF  is compression) 

(v) Joint F: FC 2F W   (i.e., by the vertical force equilibrium condition) 

(vi) Joint F: FE FGF F  (i.e., by the horizontal force equilibrium condition) 

(vii) Joint H: HA 0F   and HG 0F   (i.e., by the horizontal and vertical force equilibrium 

conditions; non-collinear members in a joint that has only two members) 
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UNIT SUMMARY  

 A truss is an assembly of members connected together by rivets/welds, and all joints are 

assumed to be pinned/hinged. 

 The only internal force is the axial member force; tension or compression. 

 Statically determinate stable structures are considered for analysis using the method of 

joints and method of section. 

 The method of joints is useful when all the member forces are to be determined, and the 

method of section is preferred when a selected member forces are required. 

 Zero-force members can be identified by visual inspection of the trusses to simplify the 

solution process. 
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EXERCISES  

5.1 Analyse the trusses shown in Figure 5.25 for the member forces using the method of joints. 

5.2 Analyse the trusses shown in Figure 5.25 for the member forces using the method of sections. 

 

Figure 5.25 Truss examples for exercise  
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QR Code for Simple Trusses 

 

NPTEL Lecture: https://www.youtube.com/watch?v=pkTx8L9ibDc 
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APPENDICES 
 

APPENDIX-A: Area and Centroid 
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APPENDIX-A: Area and Centroid (contd.) 
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APPENDIX-B: Slope and Deflection 

Beam Slope Deflection 
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APPENDIX-C: Fixed End Moments 
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CO AND PO ATTAINMENT TABLE  

 

Course outcomes (COs) for this course can be mapped with the programme outcomes (POs) after 

the completion of the course and a correlation can be made for the attainment of POs to analyze the 

gap. After proper analysis of the gap in the attainment of POs necessary measures can be taken to 

overcome the gaps. 

Table for CO and PO attainment 

 PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 

CO-1 3 3 3 2 1 1 3 

CO-2 3 3 2 2 1 1 3 

CO-3 3 3 2 1 1 1 3 

CO-4 3 3 3 1 1 1 3 

CO-5 3 3 2 1 1 1 3 

* (1- Weak correlation; 2- Medium correlation; 3- Strong correlation) 

The data filled in the above table can be used for gap analysis. 
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